Skip to main content

Aquatic Weeds: A Potential Pollutant Removing Agent from Wastewater and Polluted Soil and Valuable Biofuel Feedstock

  • Chapter
  • First Online:
Bioremediation using weeds

Abstract

The worldwide growing population needs water security for communities will rise higher in the near future. Natural freshwater sources globally decreasing rapidly; therefore, it is expected that clean water will be secured sincerely for basic human needs (Rezania et al. in J Hazard Mater 318:587–599, 2016c). Due to rapid urbanization and industrialization, wastewater discharge into the environment is increasing day by day. In the last few years, developed countries are updating the environmental policies and dedicated to reducing water pollution as well as developing an efficient and self-sustainable approach for wastewater treatment. For higher efficacy particularly in metropolitan cities, the advancement of recognized traditional treatment methods of water and wastewater is in a need to be further developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandha Varun R, Kalpana S (2015) Performance analysis of nutrient removal in pond water using Water Hyacinth and Azolla with papaya stem. Int Res J Eng Technol 2(1):444–448

    Google Scholar 

  • Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer, Singapore, p 87

    Book  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  Google Scholar 

  • Barua VB, Kalamdhad AS (2018) Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217:91–97

    Article  Google Scholar 

  • Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37(1):109–116

    Article  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate tolerant Holcus lanatus. Plant J 45:917–929

    Google Scholar 

  • Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155(1–2):1–18

    Article  Google Scholar 

  • Cheng J, Xie B, Zhou J, Song W, Cen K (2010) Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrogen Energy 35(7):3029–3035

    Article  Google Scholar 

  • Cheng J, Xia A, Su H, Song W, Zhou J, Cen K (2013) Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Convers Manag 73:329–334

    Article  Google Scholar 

  • Chuang YS, Lay CH, Sen B, Chen CC, Gopalakrishnan K, Wu JH, Lin CS, Lin CY (2011) Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. Int J Hydrogen Energy 36(21):14195–14203

    Article  Google Scholar 

  • Dixit A, Dixit S, Goswami CS (2011) Process and plants for wastewater remediation: a review. Sci Rev Chem Commun 1(1):71–77

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  Google Scholar 

  • Güngören Madenoğlu T, Jalilnejad Falizi N, Kabay N, Güneş A, Kumar R, Pek T, Yüksel M (2019) Kinetic analysis of methane production from anaerobic digestion of water lettuce (Pistia stratiotes L.) with waste sludge. J Chem Technol Biotechnol 94(6):1893–1903

    Google Scholar 

  • Gupta A, Balomajumder C (2015) Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Eng 7:74–82

    Article  Google Scholar 

  • Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241

    Article  Google Scholar 

  • Haffner FB, Mitchell VD, Arundale RA, Bauer S (2013) Compositional analysis of Miscanthus giganteus by near infrared spectroscopy. Cellulose 20(4):629–1637

    Article  Google Scholar 

  • Hronich JE, Martin L, Plawsky J, Bungay HR (2008) Potential of Eichhornia crassipes for biomass refining. J Ind Microbiol Biotechnol 35(5):393–402

    Article  Google Scholar 

  • Hua J, Zhang C, Yin Y, Chen R, Wang X (2012) Phytoremediation potential of three aquatic macrophytes in manganese-contaminated water. Water Environ J 26(3):335–342

    Article  Google Scholar 

  • Ibrahim HS, Ammar NS, Soylak M, Ibrahim M (2012) Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta Part A Mol Biomol Spectrosc 96:413–420

    Article  Google Scholar 

  • Ismail Z, Othman SZ, Law KH, Sulaiman AH, Hashim R (2015) Comparative performance of Water Hyacinth (Eichhornia crassipes) and Water Lettuce (Pista stratiotes) in preventing nutrients build-up in municipal wastewater. CLEAN-Soil Air Water 43(4):521–531

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotech 8(6):921–928

    Google Scholar 

  • Jain SK, Gujral GS, Jha NK, Vasudevan P (1992). Production of biogas from Azolla pinnata R. Br and Lemna minor L.: effect of heavy metal contamination. Bioresour Technol 41(3):273–277

    Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manage 87(3):450–460

    Google Scholar 

  • Jianbo LU, Zhihui FU, Zhaozheng YIN (2008) Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J Environ Sci 20(5):513–519

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  Google Scholar 

  • Karthikeyan OP, Mehariya S, Wong JWC (2017) Bio-refining of food waste for fuel and value products. Energy Procedia 136:14–21

    Article  Google Scholar 

  • Karthikeyan OP, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Biores Technol 249:1025–1039

    Article  Google Scholar 

  • Kaur M, Kumar M, Sachdeva S, Puri SK (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Biores Technol 251:390–402

    Article  Google Scholar 

  • Kaur M, Kumar M, Singh D, Sachdeva S, Puri SK (2019) A sustainable biorefinery approach for efficient conversion of aquatic weeds into bioethanol and biomethane. Energy Convers Manage 187:133–147

    Article  Google Scholar 

  • Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54(5):262–267

    Article  Google Scholar 

  • Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55(1):1–7

    Article  Google Scholar 

  • Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015b) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Biores Technol 182:383–388

    Article  Google Scholar 

  • Kumari M, Tripathi BD (2014) Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol Eng 62:48–53

    Article  Google Scholar 

  • Kumari S, Kumar B, Sheel R (2017) Biological control of heavy metal pollutants in water by Salvinia molesta. Int J Curr Microbiol Appl Sci 6(4):2838–2843

    Article  Google Scholar 

  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223(2):877–888

    Article  Google Scholar 

  • Lay CH, Sen B, Chen CC, Wu JH, Lee SC, Lin CY (2013) Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Biores Technol 135:610–615

    Article  Google Scholar 

  • Lee CJ, Yangcheng H, Cheng JJ, Jane J (2016) Starch characterization and ethanol production of duckweed and corn kernel. Starch-Stärke 68:348–354

    Article  Google Scholar 

  • Liao SW, Chang WL (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage 42:60–68

    Google Scholar 

  • Loan NT, Phuong NM, Anh NTN (2014) The role of aquatic plants and microorganisms in domestic wastewater treatment. Environ Eng Manage J 13(8):2031–2038

    Article  Google Scholar 

  • Lokuge UML (2016) A study on the phytoremediation potential of Azolla pinnata under laboratory conditions. J Trop For Environ 6(1):36–49

    Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17(1):84–96

    Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18(6):978–986

    Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33(1):122–138

    Article  MathSciNet  Google Scholar 

  • Maneein S, Milledge J, Nielsen B, Harvey P (2018) A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 4(4):100

    Article  Google Scholar 

  • Martín-Lara MA, Blázquez G, Trujillo MC, Pérez A, Calero M (2014) New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. J Clean Prod 81:120–129

    Article  Google Scholar 

  • Masami GOO, Usui I, Urano N (2008) Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres. Afr J Microbiol Res 2(5):110–113

    Google Scholar 

  • Mathew AK, Bhui I, Banerjee SN, Goswami R, Chakraborty AK, Shome A, Balachandran S, Chaudhury S (2015) Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol Environ Policy 17(6):1681–1688

    Article  Google Scholar 

  • Mehariya S, Iovine A, Casella P, Marino T, Chianese S, Antonio M (2018a) Biofuels production using supercritical water gasification of biomass. In: Mittal V (ed) Biofuels. Central West Publishing, Australia, pp 87–116

    Google Scholar 

  • Mehariya S, Patel AK, Obulisamy PK, Punniyakotti E, Wong JWC (2018b) Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Biores Technol 265:519–531

    Article  Google Scholar 

  • Miranda AF, Muradov N, Gujar A, Stevenson T, Nugegoda D, Ball A, Mouradov A (2014) Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. J Sustain Bioenergy Syst 4(1):97–112

    Article  Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(1):221

    Article  Google Scholar 

  • Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Biores Technol 99:2495–2500

    Article  Google Scholar 

  • Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol Int J 19(1):26–34

    Google Scholar 

  • Molino A, Giordano G, Migliori M, Lauro V, Santarcangelo G, Marino T, Larocca V, Tarquini P (2016) Process innovation via supercritical water gasification to improve the conventional plants performance in treating highly humid biomass. Waste Biomass Valorization 7(5):1289–1295

    Article  Google Scholar 

  • Moyo P, Chapungu L, Mudzengi B (2013) Effectiveness of water hyacinth (Eichhornia crassipes) in remediating polluted water: the case of Shagashe river in Masvingo, Zimbabwe. Adv Appl Sci Res 4(4):55–62

    Google Scholar 

  • Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao X (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Biores Technol 185:79–88

    Article  Google Scholar 

  • O’Sullivan C, Rounsefell B, Grinham A, Clarke W, Udy J (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana) and salvinia (Salvinia molesta). Ecol Eng 36(10):1459–1468

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30(1):3–8

    Article  Google Scholar 

  • Pandharipande S, Gadpayle P (2016) Phytoremediation studies for removal of copper and chromium using Azolla pinnata and water hyacinth. Int J Innov Res Sci Eng Technol 5(5):7078–7083

    Google Scholar 

  • Panepinto D, Fiore S, Genon G, Acri M (2016) Thermal valorization of sewer sludge: perspectives for large wastewater treatment plants. J Clean Prod 137:1323–1329

    Article  Google Scholar 

  • Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39(27):14663–14668

    Article  Google Scholar 

  • Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of chromium and cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2(2):136–138

    Google Scholar 

  • Putra RS, Cahyana F, Novarita D (2015) Removal of lead and copper from contaminated water using EAPR system and uptake by water lettuce (Pistia Stratiotes L.). Procedia Chem 14:381–386

    Article  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646

    Article  Google Scholar 

  • Rajan K, Carrier DJ (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenerg 62:222–227

    Article  Google Scholar 

  • Rezania S, Din MFM, Ponraj M, Sairan FM, Binti Kamaruddin SF (2013) Nutrient uptake and wastewater purification with Water Hyacinth and its effect on plant growth in batch system. J Environ Treat Tech 1(2):81–85

    Google Scholar 

  • Rezania S, Ponraj M, Din MFM, Songip AR, Sairan FM, Chelliapan S (2015a) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sustain Energy Rev 41:943–954

    Article  Google Scholar 

  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015b) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133

    Article  Google Scholar 

  • Rezania S, Din MFM, Kamaruddin SF, Taib SM, Singh L, Yong EL, Dahalan FA (2016a) Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111:768–773

    Article  Google Scholar 

  • Rezania S, Ponraj M, Din MFM, Chelliapan S, Sairan FM (2016b) Effectiveness of Eichhornia crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalination Water Treat 57(1):360–365

    Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016c) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58(1–3):206–215

    Article  Google Scholar 

  • Ruan T, Zeng R, Yin XY, Zhang SX, Yang ZH (2016) Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources 11(1):2372–2380

    Article  Google Scholar 

  • Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372

    Article  Google Scholar 

  • Sciessere L, Cunha-Santino MB, Bianchini I Jr (2011) Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon. Braz J Microbiol 42(3):909–918

    Article  Google Scholar 

  • Sekomo CB, Kagisha V, Rousseau D, Lens P (2012) Heavy metal removal by combining anaerobic upflow packed bed reactors with water hyacinth ponds. Environ Technol 33(12):1455–1464

    Article  Google Scholar 

  • Shah RA, Kumawat DM, Singh N, Wani KA (2010) Water Hyacinth (Eichhornia crassipes) as a remediation tool for dye effluent pollution. Int J Sci Nat 1(2):172–178

    Google Scholar 

  • Siciliano A, Limonti C, Mehariya S, Molino A, Calabrò V (2018) Biofuel production and phosphorus recovery through an integrated treatment of agro-industrial waste. Sustainability 11(1):52

    Article  Google Scholar 

  • Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Gnansounou E, Castro E, Faraco V (2017) Water hyacinth a potential source for value addition: an overview. Biores Technol 230:152–162

    Article  Google Scholar 

  • Sivasankari B, David RA (2016) A study on chemical analysis of water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes). Int J Innov Res Sci Eng Technol 5:17566–17570

    Article  Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal Symbiosis. Academic Press, New York, p 803

    Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41(2):122–137

    Article  Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22(1):27–42

    Article  Google Scholar 

  • Sopajarn A, Sangwichien C (2015) Optimization of enzymatic saccharification of alkali pretreated Typha angustifolia for glucose production. Int J Chem Eng Appl 6(4):232–236

    Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2010) Hydrogen production from water hyacinth through dark- and photo-fermentation. Int J Hydrogen Energy 35(17):8929–8937

    Article  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Biores Technol 99:6017–6027

    Article  Google Scholar 

  • Tripathi BD, Upadhyay AR (2003) Dairy effluent polishing by aquatic macrophytes. Water Air Soil Pollut 143(1–4):377–385

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  Google Scholar 

  • Valero MAC, Johnson M, Mather T, Mara DD (2009) Enhanced phosphorus removal in a waste stabilization pond system with blast furnace slag filters. Desalination Water Treat 4(1–3):122–127

    Article  Google Scholar 

  • Valipour A, Raman VK, Ahn YH (2015) Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water 7(1):329–347

    Article  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369

    Article  Google Scholar 

  • Wang J, Fu G, Li W, Shi Y, Pang J, Wang Q, Lü W, Liu C, Liu J (2018) The effects of two free-floating plants (Eichhornia crassipes and Pistia stratiotes) on the burrow morphology and water quality characteristics of pond loach (Misgurnus anguillicaudatus) habitat. Aquacult Fish 3(1):22–29

    Google Scholar 

  • Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 102(4):1158–1168

    Article  Google Scholar 

  • Xu J, Deshusses MA (2015) Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int J Hydrogen Energy 40(22):7028–7036

    Article  Google Scholar 

  • Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182(2):421–428

    Article  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794

    Article  Google Scholar 

  • Zheng Y, Zhang S, Miao S, Su Z, Wang P (2013) Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. J Biotechnol 166(3):135–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Molino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehariya, S. et al. (2021). Aquatic Weeds: A Potential Pollutant Removing Agent from Wastewater and Polluted Soil and Valuable Biofuel Feedstock. In: Pant, D., Bhatia, S.K., Patel, A.K., Giri, A. (eds) Bioremediation using weeds. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-33-6552-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6552-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6551-3

  • Online ISBN: 978-981-33-6552-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics