Skip to main content

Advertisement

Log in

Potential of Eichhornia crassipes for biomass refining

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Here we explore the utilization of Eichhornia crassipes, commonly known as water hyacinth, as a competitive source of biomass for conversion to fuel. Ecologically, E. crassipes is the most undesirable of a class of noxious and invasive aquatic vegetation. Water hyacinth grows rapidly on the surface of waterways, forming a dense mat which depletes the surrounding environment of essential nutrients. These properties, rarely encountered in other plant systems, are features of an ideal feedstock for renewable biomass. The high characteristic water content limits the range over which the material can be transported; however it also makes E. crassipes a natural substrate for rapid microbial metabolism that can be employed as a potentially effective biological pretreatment technology. We show through a life cycle analysis that water hyacinth is a competitive feedstock with the potential to be produced at a cost of approximately $40 per ton of dry mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. According to Simberloff et al. [3] an average annual cost of $2.7 million was spent to manage 13,400 ha of water hyacinth mixed with water lettuce. The cost was adjusted for inflation using the CPI inflation calculator.

References

  1. Abraham M, Kurup M (1996) Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia crassipes)—influence of various physico-chemical factors. J Ferment Bioeng 82:259–263

    Article  CAS  Google Scholar 

  2. Bagnall LO (1982) Bulk mechanical properties of waterhyacinth. J Aquat Plant Manage 20:49–53

    Google Scholar 

  3. Battle JM, Mihuc TB (2000) Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418:123–136

    Article  Google Scholar 

  4. Center for Aquatic and Invasive Plants, University of Florida, and the Bureau of Invasive Plant Management, Florida Department of Environmental Protection (2003). Plant management in Florida waters (http://plants.ifas.ufl.edu/guide/mechcons.html#meccertain)

  5. Chanakya HN, Borgaonkar S, Rajan MGC, Wahi M (1992) Two-phase anaerobic digestion of water hyacinth or urban garbage. Bioresour Technol 42(2):123–131

    Article  CAS  Google Scholar 

  6. Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegradation 59:85–89

    Article  CAS  Google Scholar 

  7. Consumer Price Index (CPI) Inflation Calculator (2007). (http://data.bls.gov/cgi-bin/cpicalc.pl)

  8. DeBusk TA, Bierberg FE (1984) Effect of nitrogen and fiber content on the decomposition of the waterhyacinth (Eichhornia crassipes [Mart.] Solms). Hydrobiologia 118:199–204

    Article  CAS  Google Scholar 

  9. Dias De Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55:593–602

    Article  Google Scholar 

  10. EERE (2007) Biomass feedstocks. US Department of Energy, Energy Efficiency and Renewable Energy. (http://www1.eere.energy.gov/biomass/biomass_feedstocks.html)

  11. Gamage NPD, Asaeda T (2005) Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria. Hydrobiologia 541:13–27

    Article  CAS  Google Scholar 

  12. Gaur S, Singhal P, Hasija SK (1992) Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquat Bot 43:1–15

    Article  Google Scholar 

  13. Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96:1584–1591

    Article  CAS  PubMed  Google Scholar 

  14. Gunnarsson CC, Peterson CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27:117–129

    Article  Google Scholar 

  15. Gupta MK, Shrivastava P, Singhal PK (1996) Decomposition of young water hyacinth leaves in lake water. Hydrobiologia 335:33–41

    Article  CAS  Google Scholar 

  16. Isarankura-Na-Ayudhya C, Tantimongcolwat T, Kongpanpee T, Prabkate P, Prachayasittikul V (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176

    Google Scholar 

  17. Ismail A, Abdel-Naby M, Abdel-Fattah A (1995) Utilization of water hyacinth cellulose for production of cellobiase rich preparation by Aspergillus niger 1. Microbios 83:191–198

    CAS  PubMed  Google Scholar 

  18. Karim A (1948) Microbiological decomposition of water hyacinth. Soil Sci 66:401–416

    Article  CAS  Google Scholar 

  19. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105(1):27–41

    Article  PubMed  Google Scholar 

  20. Liverpool Water Witch Marine and Engineering Co. Ltd. (2007) Liverpool Water Witch Waterway Maintenance Solutions. (http://www.waterwitch.com/waterwitch)

  21. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  22. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Progr 15(5):777–793

    Article  CAS  Google Scholar 

  23. Malik A (2007) Environmental challenge vis a vis opportunity: the case of the water hyacinth. Environ Int 33:122–138

    Article  CAS  PubMed  Google Scholar 

  24. McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. NREL/TP-580-28893, US Department of Agriculture and US Department of Energy

  25. Mishima D et al (2007) Ethanol production from candidate energy crops: water… Bioresour. Technol. doi:10.1016/j.biortech.2007.04.056

  26. Mukherjee R, Ghosh M, Nandi B (2004) Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi. Indian J Exp Biol 42:837–843

    CAS  PubMed  Google Scholar 

  27. Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116

    Article  CAS  PubMed  Google Scholar 

  28. Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18:447–472

    Article  Google Scholar 

  29. Petrell R, Smerage L (1991) Physical description of water hyacinth mats to improve harvester design. J Aquat Plant Manage 29:45–50

    Google Scholar 

  30. Reddy KR, Sutton DL (1984) Waterhyacinths for water quality improvement and biomass production. J Environ Quality 13:1–8

    Article  CAS  Google Scholar 

  31. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program—Biodiesel from Algae, NREL/TP-580-24190

  32. Simberloff D, Schmitz C, Brown C (1997) Strangers in paradise: impact and management of nonindigenous species in Florida. Island Press, Washington, DC

    Google Scholar 

  33. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31:416–425

    Article  Google Scholar 

  34. Turhollow A (1994) The economics of energy crop production. Biomass Bioenergy 6(3):229–241

    Article  Google Scholar 

  35. Ulrich D, Vasudevan T (2004) Chemical engineering process design and economics: a practical guide. Ulrich Publishing, Ann Arbor, pp 409–435

  36. US Army Corps of Engineers (2002) Flail choppers. (http://el.erdc.usace.army.mil/aqua/apis/apishelp.htm)

  37. US Army Corps of Engineers (2002) Harvesting. (http://el.erdc.usace.army.mil/aqua/apis/apishelp.htm)

  38. US DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy. (http://www.doegenomestolife.org/biofuels/)

  39. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Progr 15(5):794–803

    Article  CAS  Google Scholar 

  40. Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Progr 19:254–262

    Article  CAS  Google Scholar 

  41. Xie Y, Qin H, Yu D (2004) Nutrient limitation to the decomposition of water hyacinth (Eichhornia crassipes). Hydrobiologia 529:105–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Science Foundation, NSF-DGE-0504361, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lealon Martin.

Additional information

JIMB 2008: BioEnergy—special issue.

Appendices

Appendix A

Crop

A

Lake area covered

300 (acres)

Parameter

 

G

Annual plant growth

100 (tons DM/ha per year)

Parameter

[14, 30]

M T

Plants grown on lake annually

2.20E+08 (kg/year)

\( M_{\rm T} =\frac{{\rm AG}\left({907} \right)\left({0.404} \right)}{1-R_{\rm w,in}}\)

Eq. 1

r A

Plant areal density

14 (kg/m2)

Parameter

[29]

t yr

Days/year working

310 (days/year)

Parameter

 

M D

Mass that can be harvested/day

7.09E+05 (kg/day)

\(M_{\rm D} =\frac{M_{\rm T}}{T_{\rm yr}}\)

Eq. 2

Harvest

w cut

Cut width

3.5 (m)

Parameter

 

v cut

Cut speed

45 (m/min)

Parameter

[20]

A H

Area harvested hourly

9,450 (m2/h)

\( A_{\rm H} =w_{\rm cut} v_{\rm cut}\left({60} \right)\)

Eq. 4

T D

Hours harvested/day

8 (h)

Parameter

 

A DH

Daily harvest per harvester

75,600 (m2/day)

ADHAHtD

Eq. 5

M H

Mass plants harvested per harvester

1.06E+06 (kg/day)

MHADHρA

Eq. 6

N H

Whole number harvesters required

1

\(N_{\rm H}=\frac{M_{\rm D}}{M_{\rm H}}\)

Eq. 7 a

A D

Total acres per day harvested

18.7 (acres)

\( A_{\rm D} =\frac{A_{\rm DH}N_{\rm H}}{4046}\)

Eq. 8

f H

Re-growth rate required to maintain

24 (days)

\( f_{\rm H} =\frac{A\left({4046} \right)\rho _{\rm A}}{M_{\rm D}}\)

Eq. 3

P H

Harvester energy requirements (each)

100 (kW)

Parameter

[20]

Transportation from lake to storage

C M

Connectivity of hyacinth mats

100 (Pa)

Parameter

[29]

v M

Speed of pulling mat in

2 (m/s)

Parameter

 

r

Plant density

167 (kg/m3)

Parameter

[2]

l M

Estimated length of hyacinth mats

180 (m)

\( l_{\rm M} =\frac{C_{\rm M} \left({600} \right)}{v_{\rm m} \rho}\)

Eq. 9

M M

Estimated weight of hyacinth mats

8.80E+03 (kg)

MMlMwcutρA

Eq. 10

N M

Number of mats pulled daily

81 (mats/day)

\(N_{\rm M} =\frac{M_{\rm D}}{M_{\rm M}}\)

Eq. 11

P RB

Row boat energy requirements

5 (hp)

Parameter

 

N RB

Number of operators required

3

\( N_{\rm RB} = \frac{{N_{\rm M}}}{{t_{\rm D}} \left({4} \right)}\)

Eq. 12 a

Storage/decomposition

M D

Mass of plant material entering

7.09E+05 (kg/day)

  

R W,in

% Water in material

0.95 (mass %)

Parameter

[14]

M W,in

Total mass water in entering material

6.74E+05 (kg/day)

Mw,inRw,inMD

Eq. 13

M B,in

Total mass fiber in enetering material

3.55E+04 (kg/day)

\(M_{\rm B,in} =\left({1-R_{\rm w,in}} \right)M_{\rm D} \)

Eq. 14 b

R W,rem

Total water removal desired

0.97 (mass %)

Parameter

c

M P,HR

Mass of plant material processed per hour

2.96E+04 (kg/h)

\( M_{\rm P,hr} =\frac{M_{\rm D}}{24}\)

Eq. 15 d

M W,rem

Mass of desired water removed

2.72E+04 (kg/h)

\( M_{\rm w,rem} =\frac{M_{\rm w,in} R_{\rm w,rem}}{24}\)

Eq. 16

M T,out

Total mass leaving presses

2.32E+03 (kg/h)

\(M_{\rm T,out} =M_{\rm P,hr} -M_{\rm w,rem} \)

Eq. 17

M W,out

Mass water remaining in biomass

8.42E+02 (kg/h)

\( M_{\rm w,out} =\frac{M_{\rm w,in}}{24}-M_{\rm w,rem}\)

Eq. 18

\(M_{\rm B, out}\)

Mass biomass leaving presses

1.48E+03 (kg/h)

\( M_{\rm B,out} =\frac{M_{\rm B,in}}{24}\)

Eq. 19

\(R_{\rm W, out}\)

Percent water leaving presses

36.31% (mass %)

\(R_{\rm w,out} =\frac{M_{\rm w,out}}{M_{\rm T,out}}\)

Eq. 20

\(R_{\rm B, out}\)

Percent biomass leaving presses

63.69% (mass %)

\(R_{\rm B,out} =\frac{M_{\rm B,out}}{M_{\rm T,out}}\)

Eq. 21

N P

# of presses required to achieve %

6

Parameter

c

P P

Energy used by each press

29.3 (hp)

\( P_{\rm P} =\left({18\,\hbox{hp-hr/ton}} \right)\left({\frac{M_{\rm P,hr} }{907}} \right)\left({1-R_{\rm w,in}} \right)\)

Eq. 22 e

P PT

Total energy used

175. 9 (hp)

PPTNPPP

Eq. 23

  1. aRounded up
  2. b1 Day is equivalent to 8 h
  3. cManufacturer specification
  4. dProcess becomes continuous
  5. eManufacturer general rule of thumb: 18 hp/ton fiber per h

Appendix B

Capital

C S

Site

$1,000,000

Parameter

 

C E

Equipment

$192,000

Parameter

 

C fix

Fixed capital costs

$1,192,000

CS + CE

 

C W

Working capital

$119,200

0.1C fix

[35]

C T

Total capital costs

$1,311,200

CW + Cfix

 

Manpower

MH H

Harvesting

8 (Manhours/day)

T D M H

 

MH T

Transporting

24 (Manhours/day)

T D N RB

 

MH P

Pressing/digestion

8 (Manhours/day)

Parameter

 

C wage

Wage + benefits

$13.00 ($/Manhour)

Parameter

 

C wage,T

Total, per year

$161,200.00 ($/year)

\((MH_{\rm H}+MH_{\rm T}+MH_{\rm P})C_{\rm wage}t_{\rm yr}\)

 

C wage,S

Supervisory labor, per year

$16,120.00 ($/year)

0.1C wage,T

[35]

Maintenance and operation

C fuel,H

Fuel for harvester

$22,320 ($/year)

tyrtD [3 ($/gal)] ([NHPH 1,000 (W/kW) 3600 (s/hr)]/[43E6 (J/kg)]) [264.172 (gal/m3)/737.22 (kg/m3)]

 

C fuel,RB

Transport power required

$2,498 ($/year)

tyrtD [3 ($/gal)] ([NRBPRB 1000 (W/kW) 3,600 (s/hr)]/[43E6 (J/kg)]) [264.172 (gal/m3)/737.22 (kg/m3)]

 

C P

Mill press power

$146,473 ($/year)

[N P P P0.746 (kW/hp)] 0.15 ($/kWh) 24 (hr/day)t yr

 

C MR

Maintenance and repairs

$19,200 ($/year)

0.1C E

[35]

C OS

Operating supplies

$1,920 ($/year)

0.1C MR

[35]

C O

Overhead

$49,130 ($/year)

0.25(C wage,T + C wage,S + C MR)

[35]

C LT

Local taxes

$11,920 ($/year)

0.01C fix

[35]

C I

Insurance

$23,840 ($/year)

0.02C fix

[35]

C Admin

Administrative costs

$12,283 ($/year)

0.25C O

[35]

C MO

Total maintenance and operation costs

$466,903 ($/year)

\(C_{\rm wage,T}+C_{\rm wage,S}+C_{\rm fuel,H}+C_{\rm fuel,RB}+C_{\rm P}+C_{\rm MR}+C_{\rm OS}+C_{\rm O}+C_{\rm LT}+C_{\rm I}+C_{\rm Admin}\)

 

Depreciation

C D

Straight-line depreciation

$59,600 ($/year)

0.05C fix

 

Credit

C cred

Water hyacinth removal credit

$130 ($/acre)

Parameter

[7, 32]

C total,yr

Total annual cost

$487,503 ($/year)

CMO + CD−(CcredA)

 

Biomass production

M biomass

Bioimass produced annual

1.21E+04 (ton/year)

[M B,out/907.18 (kg/ton)] [24(hr/day)]t yr

 

C Final

Price per ton to produce

$40.22 ($/ton)

Ctotal,yr/Mbiomass

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hronich, J.E., Martin, L., Plawsky, J. et al. Potential of Eichhornia crassipes for biomass refining. J Ind Microbiol Biotechnol 35, 393–402 (2008). https://doi.org/10.1007/s10295-008-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0333-x

Keywords

Navigation