Skip to main content

Arsenic: Source, Distribution, Toxicity and Bioremediation

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic is ubiquitous in nature and a well-known toxic metalloid. There are four oxidation states (−3, 0, +3 and + 5) of arsenic found in nature and most common forms are +3 and + 5. The main sources of arsenic in nature are anthropogenic and natural activities. The natural sources include rocks, soils, seawater, arsenic-bearing minerals, volcanic emission and river originating from Himalaya. The anthropogenic activities include mining, smelting, use in herbicides and combustion of fossil fuels. The exposure to arsenic occurs mainly by consumption of arsenic contaminated drinking water or food. Arsenic is distributed all around the world beyond permissible limits in drinking water. Such type of contamination was reported in India, Thailand, Mexico, Chile, Argentina, China, Taiwan, USA Hungary and Bangladesh. The arsenic toxicity largely depends on its physical state and chemical form of the arsenic compound. Arsenic toxicity causes bladder, prostate, lung and skin cancer, rhagades, skin lesions, oxidative stress, mitochondrial damage and may interfere with the DNA methylation or DNA repair system. The ubiquitous nature of arsenic leads microorganism to evolve several plan of action for their survival in stressed environments. These strategies include arsenic oxidation, reduction, intracellular bioaccumulation and methylation. These strategies can be used in mitigation of the environmental arsenic from contaminated sites. In bacteria, the uptake of As(III) is mediated by GlpF whereas the A(V) uptake is facilitated by Pst and Pit membrane proteins. The oxidation of arsenic occurs in the periplasm of the bacteria and is regulated by arsenite oxidase (AoxAB) enzyme. The arsenate As(V) reduction occurs either in cytoplasm or in periplasm of the bacteria by arsenate reductase, ArsC or by arrA and arrB, respectively. The bioremediation is a low-cost and eco-friendly technique for the treatment of arsenic contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Arsenic trace elements in terrestrial environments. Springer, New York, pp 219–261

    Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integr Omics Appl Biotechnol 3(3):39–46

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371(6500):750–750

    Article  CAS  PubMed  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48(5):341–347

    Article  CAS  PubMed  Google Scholar 

  • Arsène-Ploetze F, Koechler S, Marchal M, Coppée J-Y, Chandler M, Bonnefoy V et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6(2):e1000859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23(6):803–812

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A 46(14):1736–1747

    Article  CAS  Google Scholar 

  • Bishop R, Chisholm D (1966) Arsenical spray residues on apples and in some apple products. Can J Plant Sci 46(3):225–231

    Article  CAS  Google Scholar 

  • Butt AS, Rehman A (2011) Isolation of arsenite-oxidizing bacteria from industrial effluents and their potential use in wastewater treatment. World J Microbiol Biotechnol 27(10):2435–2441

    Article  CAS  Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK et al (2003) Arsenic groundwater contamination in middle ganga plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaurasia N, Mishra A, Pandey S (2012) Finger print of arsenic contaminated water in India—a review. J Forensic Res 3(10):1–4

    Article  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20(11):7728–7739

    Article  CAS  Google Scholar 

  • Edmonds J, Francesconi K (1987) Transformations of arsenic in the marine environment. Experientia 43(5):553–557

    Article  CAS  PubMed  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    Article  CAS  Google Scholar 

  • Ghosh N, Singh R (2009) Groundwater arsenic contamination in India: vulnerability and scope for remedy

    Google Scholar 

  • Harrington JM, Middaugh JP, Morse DL, Housworth J (1978) A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska. Am J Epidemiol 108(5):377–385

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Johnson DL (1972) Bacterial reduction of arsenate in sea water. Nature 240(5375):44–45

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies M-A, Goulhen-Chollet F et al (2010) Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 10(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841

    Article  CAS  PubMed  Google Scholar 

  • Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  PubMed  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9(3):207–215

    CAS  PubMed  Google Scholar 

  • Nath A, Shailendra K, Priyanka S, Anshu A, Singh M (2015) Arsenic in tube well water in six blocks of Supaul District, Bihar. IOSR J Environ Sci Toxicol Food Technol 9(1):05–08. https://doi.org/10.9790/2402-09110508

    Article  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  • Obinaju BE (2009) Mechanisms of arsenic toxicity and carcinogenesis. Afr J Biochem Res 3(5):232–237

    CAS  Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Butt SA, Hasnain S (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 9(10):1493–1498

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Saha D (2009) Arsenic groundwater contamination in parts of middle ganga plain, Bihar. Curr Sci 97(6):753–755

    CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyapal G, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8(3):256–258

    Article  CAS  Google Scholar 

  • Shakoori FR, Aziz I, Rehman A, Shakoori A (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pak J Zool 42(3):331

    CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1–2):67–78

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71(2):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedley P, Edmunds W, Pelig-Ba K (1996) Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. Geol Soc Lond Spec Publ 113(1):163–181

    Article  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23(5):615–627

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Suttigarn A, Wang Y-T (2005) Arsenite oxidation by Alcaligenes faecalis strain O1201. J Environ Eng 131(9):1293–1301

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochimica et Biophysica Acta 1827(2):176–188

    Article  PubMed  CAS  Google Scholar 

  • Villadangos AF, Fu H-L, Gil JA, Messens J, Rosen BP, Mateos LM (2012) Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter. J Biol Chem 287(1):723–735

    Article  CAS  PubMed  Google Scholar 

  • Villadangos AF, Ordóñez E, Pedre B, Messens J, Gil JA, Mateos LM (2014) Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl Microbiol Biotechnol 98(24):10143–10152

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300(1–3):167–177

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satyapal, G.K., Kumar, N. (2021). Arsenic: Source, Distribution, Toxicity and Bioremediation. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_6

Download citation

Publish with us

Policies and ethics