Skip to main content

Microbes and Climate: A Tangled Relation

  • Chapter
  • First Online:
Microbiomes and the Global Climate Change

Abstract

In the present scenario, the undesirable changes in the climatic conditions impact different components of ecosystem such as microbes, plants, animals, soil, etc. In this chapter, an effort has been made to summarize the relation between microbes and climate and their impact on each other. There are very few relationships that could be as complex as that of microorganisms and climate. More recent evidence has attempted to explain the role of microorganisms in regulating the fluxes of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Microbes play an integral role in modulating the cycles of various elements such as carbon, nitrogen, and oxygen. They directly as well as indirectly influence the release of greenhouse gases into the environment as well as the consumption of these gases from the atmosphere. As such, the application of utilizing these microbes for mitigating climate change has started receiving greater attention. This chapter enumerates the various beneficial microbes and their individual role in amelioration of the damage to the climate, laying emphasis on the potential to exploit these microbes as a technique for remedying the adverse climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA (2013) Phosphate-solubilizing activity of aerobic methylobacteria. Microbiology 82:864–867

    Article  CAS  Google Scholar 

  • Aken VB, Peres C, Doty S, Yoon J, Schnoor J (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilising bacterium isolated from poplar trees (Populus deltoids × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196

    Article  PubMed  Google Scholar 

  • Anitha KG (2010) Enhancing seed germination of mono and dicotyledons through IAA production of PPFM trends. Soil Sci Plant Nutr 1:14–18

    Google Scholar 

  • Baesman SM, Miller LG, Wei JH, Cho Y, Matys ED, Summons RE, Welander PV, Oremland RS (2015) Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. Microorganisms 3:290–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728. https://doi.org/10.1038/ncomms11728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta H, Dutta A (2016) The microbial aspect of climate change. Energ Ecol Environ 1(4):209–232. https://doi.org/10.1007/s40974-016-0034-7

    Article  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y (2012) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of conservation reserve program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci U S A 108:13864–13869. https://doi.org/10.1073/pnas.1017277108

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase- producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Indian Farmer’s Fertilizer Cooperation Limited (2019) Production of nanotechnology based chemical fertilizers. www.iffco.in

  • IPCC (2007) Climate change 2007: synthesis report. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.Htm

  • Jayashree S, Vadivukkarasi P, Anand K, Kato Y, Seshadri S (2011) Evaluation of pink pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch Microbiol 193:543–552

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Jeyajothi R, Subbalakshmi L, Nalliah D (2014) Effect of PPFM application on microbial population in transplanted rice. Trends Biosci 7:3573–3574

    Google Scholar 

  • Jhala YK, Rajababu VV, Shelat Harsha N, Patel HK, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30(6):1845–1860

    Article  CAS  PubMed  Google Scholar 

  • Jhala YK, Rajababu VV, Panpatte Deepak G, Shelat Harsha N (2015) Rapid methods for isolation and screening of methane degrading bacteria. J Bioremed Biodegr 7:322

    Google Scholar 

  • Kappler U, Nouwens AS (2013) Metabolic adaptation and trophic strategies of soil bacteria C1-metabolism and sulfur chemolithotrophy in Starkeya novella. Front Microbiol 4:1–12

    Article  Google Scholar 

  • Kumar M, Saxena R, Tomar RS, Rai PK, Paul D (2018) Role of methylotrophic bacteria in climate change mitigation. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture, 1st edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISMEJ 5:1683–1691. https://doi.org/10.1038/ismej.2011.40

    Article  CAS  Google Scholar 

  • Lidstrom ME, Chistoserdova L (2002) Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184:1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long RLG, Holland MA, Stebbins N, Morris RO, Polacco JC (1996) Evidence for cytokinin production by plant-associated methylotrophs. Plant Physiol 111:316

    Google Scholar 

  • Maloy S, Moran MA, Mulholland MR, Sosik HM, Spear JR (2017) Microbes and climate change: report on an American Academy of Microbiology and American Geophysical Union Colloquium held in Washington, DC

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R, Katayama H, Tanaka M (2015) Requirement of carbon dioxide for initial growth of facultative methylotroph, Acidomonas methanolica MB58. J Biosci Bioeng 120(1):31–35

    Article  CAS  PubMed  Google Scholar 

  • Murrell C, McDonald I (2000) Methylotrophy. In: Lederberg J III (ed) Encyclopedia of microbiology. Academic Press, New York, pp 245–255

    Google Scholar 

  • Omer ZS, Tomboloni R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    Article  CAS  Google Scholar 

  • Oshkin IY, Beck DAC, Lamb AE, Tchesnokova V, Benuska G, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2014) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9(5):1119–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Panikov NS (1999) Understanding and prediction of soil microbial community dynamics under global change. Appl Soil Ecol 11:161–176

    Article  Google Scholar 

  • Patt TE, Cole GC, Bland J, Hanson RS (1974) Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Uma S, Sundaram S (2006) Non-nodulating pink-pigmented facultative Methylobacterium sp. with a functional nifH gene. World J Microbiol Biotechnol 22:1381–1384

    Article  CAS  Google Scholar 

  • Rodríguez AS, Valdman B, Madereiros SA (2009) Analysis of methane biodegradation by Methylosinus trichosporium OB3b. Braz J Microbiol 40:301–307

    Article  Google Scholar 

  • Rose AH (1967) Thermobiology. Academic Press, London

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh V, Pal K (2017) Importance of micro organisms in agriculture. Climate and environmental changes: Impact, challenges and solutions. pp 93–117. https://www.researchgate.net/publication/322926367

  • Strong PJ, Karthikeyan OP, Zhu J, Clarke W, Wu W (2017) Methanotrophs: methane mitigation, denitrification and bioremediation. In: Agro-environmental sustainability. Springer, New York, pp 19–40

    Chapter  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2009) Prescott’s principles of microbiology. McGraw-Hill, New York

    Google Scholar 

  • Yim W, Woo S, Kim K, Sa T (2012) Regulation of ethylene emission in tomato (Lycopersicon esculentum mill.) and red pepper (Capsicum annuum L.) inoculated with ACC deaminase producing Methylobacterium spp. Korean J Soil Sci Fert 45:37–42

    Article  CAS  Google Scholar 

  • Zúniga C, Morales M, Borgne LS, Revah S (2011) Production of poly-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, I., Khan, F., Ahmad, S., Pandey, P., Khan, M.M. (2021). Microbes and Climate: A Tangled Relation. In: Lone, S.A., Malik, A. (eds) Microbiomes and the Global Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-4508-9_1

Download citation

Publish with us

Policies and ethics