Skip to main content

Experimental Anxiety Model for Anxiety Disorders: Relevance to Drug Discovery

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

This chapter describes the various animal models that seem relevant to the development of anxiolytic drugs, as well as the human models of induced anxiety, or more precisely the panic inducers including cholecystokinin. It is also mentioned the theoretical model of Deakin and Graeff which seems to keep all its relevance. The knock animals are evoked as relevant tools as well as a new optogenetic technique that needs to be used in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vilarim MM, Rocha Araujo DM, Nardi AE. Caffeine challenge test and panic disorder: a systematic literature review. Expert Rev Neurother. 2011;11:1185–95.

    Article  PubMed  Google Scholar 

  2. Bourin M, Malinge M, Guitton B. Provocative agents in panic disorder. Therapie. 1995;50:301–6.

    CAS  PubMed  Google Scholar 

  3. Bourin M. Animal models for screening anxiolytic-like drugs: a perspective. Dialogues Clin Neurosci. 2015;17:295–303.

    PubMed  PubMed Central  Google Scholar 

  4. Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs. 2015;20:393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourin M. Le devenir des modèles pharmacologiques. Therapie. 1995;50:375–9.

    CAS  PubMed  Google Scholar 

  6. Bourin M. Animal models of anxiety: are they suitable for predicting drug action in humans? Pol J Pharmacol. 1997;49:79–84.

    CAS  PubMed  Google Scholar 

  7. Lister RG. Ethologically based animal models of anxiety disorder. In: File SE, editor. Psychopharmacology of anxiolytics and antidepressants. New York: Pergamon Press; 1991. p. 155–85.

    Chapter  Google Scholar 

  8. Benton D, Nastiti K. The influence of psychotropic drugs on ultrasonic calling of mouse pups. Psychopharmacology (Berl). 1988;95:99–102.

    Article  CAS  Google Scholar 

  9. Okano H, Hikishima K, Iriki A, Sasaki E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin Fetal Neonatal Med. 2012;17(6):336–40.

    Article  PubMed  Google Scholar 

  10. Labots M, Van Lith HA, Ohl F, Arndt SS. The modified hole board – measuring behavior, cognition and social interaction in mice and rats. J Vis Exp. 2015;98:52529. https://doi.org/10.3791/52529.

    Article  Google Scholar 

  11. Bourin M, Hascöet M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.

    Article  CAS  PubMed  Google Scholar 

  12. Hascoët M, Bourin M. A new approach to the light/dark test procedure in mice. Pharmacol Biochem Behav. 1998;60:645–53.

    Article  PubMed  Google Scholar 

  13. Bourin M. The test retest model of anxiety: an appraisal of findings to explain benzodiazepine tolerance. Pharmacol Biochem Behav. 2018. pii: S0091–3057(17)30265–4.

    Google Scholar 

  14. Ennaceur A, Chazot PL. Preclinical animal anxiety research – flaws and prejudices. Pharmacol Res Perspect. 2016;4(2):e00223. https://doi.org/10.1002/prp2.223.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bourin M, Dailly E, Hascöet M. Preclinical and clinical pharmacology of cyamemazine: anxiolytic effects and prevention of alcohol and benzodiazepine withdrawal syndrome. CNS Drug Rev. 2004;10:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hascoët M, Bourin M. The mouse light-dark box test. In: Gould TD, editor. Mood and anxiety related phenotypes in mice. Characterization using behavioral tests. New York: Humana Press; 2009. p. 197–223.

    Chapter  Google Scholar 

  17. Kettunen P. Calcium imaging in the zebrafish. Adv Exp Med Biol. 2012;740:1039–71.

    Article  CAS  PubMed  Google Scholar 

  18. Fetcho JR, Liu KS. Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci. 1998;860:333–45.

    Article  CAS  PubMed  Google Scholar 

  19. Hoshijima K, Jurynec MJ, Grunwald DJ. Precise editing of the zebrafish genome made simple and efficient. Dev Cell. 2016;36:654–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37:264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Montigny C. Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Preliminary findings. Arch Gen Psychiatry. 1989;46:511–7.

    Article  CAS  PubMed  Google Scholar 

  22. Bradwejn J, Koszycki D, Meterissian G. Cholecystokinin-tetrapeptide induces panic attacks in patients with panic disorder. Can J Psychiatry. 1990;35:83–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bradwejn J, Koszycki D, Bourin M. Dose ranging study of the effects of cholecystokinin in healthy volunteers. J Psychiatry Neurosci. 1991;16:91–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abelson JL, Nesse RM, Vinik A. Stimulation of corticotropin release by pentagastrin in normal subjects and patients with panic disorder. Biol Psychiatry. 1991;29:1220–3.

    Article  CAS  PubMed  Google Scholar 

  25. van Megen HJ, Westenberg HG, den Boer JA, Haigh JR, Traub M. Pentagastrin induced panic attacks: enhanced sensitivity in panic disorder patients. Psychopharmacology (Berl). 1994;114:449–55.

    Article  CAS  Google Scholar 

  26. Lydiard RB, Ballenger JC, Laraia MT, Fossey MD, Beinfeld MC. CSF cholecystokinin concentrations in patients with panic disorder and in normal comparison subjects. Am J Psychiatry. 1992;149:691–3.

    Article  CAS  PubMed  Google Scholar 

  27. Brambilla F, Bellodi L, Perna G, Garberi A, Panerai A, Sacerdote P. Lymphocyte cholecystokinin concentrations in panic disorder. Am J Psychiatry. 1993;150:1111–3.

    Article  CAS  PubMed  Google Scholar 

  28. Bradwejn J, Koszycki D, Couëtoux du Tertre A, Paradis M, Bourin M. Effects of flumazenil on cholecystokinin-tetrapeptide-induced panic symptoms in healthy volunteers. Psychopharmacology (Berl). 1994;114:257–61.

    Article  CAS  Google Scholar 

  29. Bradwejn J, Koszycki D, Paradis M, Reece P, Hinton J, Sedman A. Effect of CI-988 on cholecystokinin tetrapeptide-induced panic symptoms in healthy volunteers. Biol Psychiatry. 1995;38:742–6.

    Article  CAS  PubMed  Google Scholar 

  30. Bradwejn J, Koszycki D. Imipramine antagonism of the panicogenic effects of cholecystokinin tetrapeptide in panic disorder patients. Am J Psychiatry. 1994;151:261–3.

    Article  CAS  PubMed  Google Scholar 

  31. Bradwejn J, Koszycki D, Couëtoux du Tertre A, van Megen H, den Boer J, Westenberg H. The panicogenic effects of cholecystokinin-tetrapeptide are antagonized by L-365,260, a central cholecystokinin receptor antagonist, in patients with panic disorder. Arch Gen Psychiatry. 1994;5:486–93.

    Article  Google Scholar 

  32. Kramer MS, Cutler NR, Ballenger JC, Patterson WM, Mendels J, Chenault A, Shrivastava R, Matzura-Wolfe D, Lines C, Reines S. A placebo-controlled trial of L-365,260, a CCKB antagonist, in panic disorder. Biol Psychiatry. 1995;37:462–6.

    Article  CAS  PubMed  Google Scholar 

  33. Del Boca C, Lutz PE, Le Merrer J, Koebel P, Kieffer BL. Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience. 2012;218:185–95.

    Article  CAS  PubMed  Google Scholar 

  34. Dieler AC, Sämann PG, Leicht G, Eser D, Kirsch V, Baghai TC, Karch S, Schüle C, Pogarell O, Czisch M, Rupprecht R, Mulert C. Independent component analysis applied to pharmacological magnetic resonance imaging (phMRI): new insights into the functional networks underlying panic attacks as induced by CCK-4. Curr Pharm Des. 2008;14:3492–507.

    Article  CAS  PubMed  Google Scholar 

  35. Zwanzger P, Domschke K, Bradwejn J. Neuronal network of panic disorder: the role of the neuropeptide cholecystokinin. Depress Anxiety. 2012;29:762–74.

    Article  CAS  PubMed  Google Scholar 

  36. Bourin M, Dailly E. Cholecystokinin and panic disorder. Acta Neuropsychiatr. 2004;16:1–9.

    Article  Google Scholar 

  37. Wilson J, Markie D, Fitches A. Cholecystokinin system genes: associations with panic and other psychiatric disorders. J Affect Disord. 2012;136:902–8.

    Article  CAS  PubMed  Google Scholar 

  38. Domschke K, Maron E. Genetic factors in anxiety disorders. Mod Trends Pharmacopsychiatr. 2013;29:24–46.

    Article  Google Scholar 

  39. Medrihan L, Sagi Y, Inde Z, Krupa O, Daniels C, Peyrache A, Greengard P. Initiation of behavioral response to antidepressants by of the dentate gyrus. Neuron. 2017;95:564–76.

    Article  CAS  PubMed  Google Scholar 

  40. Klein DF. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psychiatry. 1993;50:306–17.

    Article  CAS  PubMed  Google Scholar 

  41. Lum LC. Hyperventilation and anxiety state. J R Soc Med. 1981;74:1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clark DM, Hemsley DR. The effects of hyperventilation; individual variability and its relation to personality. J Behav Ther Exp Psychiatry. 1982;13:41–7.

    Article  CAS  PubMed  Google Scholar 

  43. van den Bergh O, Kempynck PJ, van de Woestijne KP, Baeyens F, Eelen P. Respiratory learning and somatic complaints: a conditioning approach using CO2-enriched air inhalation. Behav Res Ther. 1995;33:517–27.

    Article  CAS  PubMed  Google Scholar 

  44. Blanchard DC, Hori K, Rodgers RJ, Hendrie CA, Blanchard RJ. Attenuation of defensive threat and attack in wild rats (Rattus rattus) by benzodiazepines. Psychopharmacology (Berl). 1989;97:392–401.

    Article  CAS  Google Scholar 

  45. Blanchard RJ, Blanchard DC. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry. 1989;13(Suppl):S3–14.

    Article  PubMed  Google Scholar 

  46. Deakin JF, Graeff FG. 5-HT and mechanisms of defence. J Psychopharmacol. 1991;5:305–15.

    Article  CAS  PubMed  Google Scholar 

  47. Graeff FG. Role of 5-HT in defensive behavior and anxiety. Rev Neurosci. 1993;4:181–211.

    Article  CAS  PubMed  Google Scholar 

  48. Graeff FG, Guimarães FS, De Andrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129–41.

    Article  CAS  PubMed  Google Scholar 

  49. Graeff FG, Viana MB, Mora PO. Opposed regulation by dorsal raphe nucleus 5-HT pathways of two types of fear in the elevated T-maze. Pharmacol Biochem Behav. 1996;53:171–7.

    Article  CAS  PubMed  Google Scholar 

  50. Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev. 2014;46(Pt 3):379–96.

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. 5-HT (1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl). 2014;231:623–36.

    Article  CAS  Google Scholar 

  52. Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM. Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Nerosci. 2013;4:72–83.

    Article  CAS  Google Scholar 

  53. Molina E, Cervilla J, Rivera M, Torres F, Bellón JA, Moreno B, King M, Nazareth I, Gutiérrez B. Polymorphic variation at the serotonin 1-A receptor gene is associated with comorbid depression and generalized anxiety. Psychiatr Genet. 2011;21:195–201.

    Article  PubMed  Google Scholar 

  54. Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol. 2016;594:953–65.

    Article  CAS  PubMed  Google Scholar 

  55. Laaris N, Le Poul E, Laporte AM, Hamon M, Lanfumey L. Differential effects of stress on presynaptic and postsynaptic 5-hydroxytryptamine-1A receptors in the rat brain: an in vitro electrophysiological study. Neuroscience. 1999;91:947–58.

    Article  CAS  PubMed  Google Scholar 

  56. Pilar-Cuéllar F, Vidal R, Díaz Á, Garro-Martínez E, Linge R, Castro E, Haberzettl R, Fink H, Bert B, Brosda J, Romero B, Crespo-Facorro B, Pazos Á. Enhanced stress response in 5-HT1AR overexpressing mice: altered HPA function and hippocampal long-term potentiation. ACS Chem Nerosci. 2017;8:2393–401.

    Article  CAS  Google Scholar 

  57. Freeman-Daniels E, Beck SG, Kirby LG. Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice. Psychopharmacology (Berl). 2011;213:453–63.

    Article  CAS  Google Scholar 

  58. Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J Psychopharmacol. 2000;14:114–38.

    Article  CAS  PubMed  Google Scholar 

  59. Bruening S, Oh E, Hetzenauer A, Escobar-Alvarez S, Westphalen RI, Hemmings HC Jr, Singewald N, Shippenberg T, Toth M. The anxiety-like phenotype of 5-HT receptor null mice is associated with genetic background-specific perturbations in the prefrontal cortex GABA-glutamate system. J Neurochem. 2006;99:892–9.

    Article  CAS  PubMed  Google Scholar 

  60. Li Q, Luo T, Jiang X, Wang J. Anxiolytic effects of 5-HT1A receptors and anxiogenic effects of 5-HT2C receptors in the amygdala of mice. Neuropharmacology. 2012;62:474–84.

    Article  CAS  PubMed  Google Scholar 

  61. Toth M. 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol. 2003;463:177–84.

    Article  CAS  PubMed  Google Scholar 

  62. García-Oscos F, Torres-Ramírez O, Dinh L, Galindo-Charles L, Pérez Padilla EA, Pineda JC, Atzori M, Salgado H. Activation of 5-HT receptors inhibits GABAergic transmission by pre-and post-synaptic mechanisms in layer II/III of the juvenile rat auditory cortex. Synapse. 2015;69:115–27.

    Article  PubMed  CAS  Google Scholar 

  63. Kishimoto K, Koyama S, Akaike N. Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. Eur J Pharmacol. 2000;407:257–65.

    Article  CAS  PubMed  Google Scholar 

  64. Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor 7: from synaptic function to therapeutic implications. Curr Neuropharmacol. 2016;14:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Connor RM, Finger BC, Flor PJ, Cryan JF. Metabotropic glutamate receptor 7: at the interface of cognition and emotion. Eur J Pharmacol. 2010;639:123–31.

    Article  PubMed  CAS  Google Scholar 

  66. Jantas D, Lech T, Gołda S, Pilc A, Lasoń W. New evidences for a role of mGluR7 in astrocyte survival: possible implications for neuroprotection. Neuropharmacology. 2018;141:223–37.

    Article  CAS  PubMed  Google Scholar 

  67. Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci. 2010;2:391–413.

    Article  PubMed  Google Scholar 

  68. Lesne E, Dupré E, Lensink MF, Locht C, Antoine R, Jacob-Dubuisson F. Coiled-coil antagonism regulates activity of Venus flytrap-domain-containing sensor kinases of the BvgS family. MBio. 2018;9(1):pii: e02052–17. https://doi.org/10.1128/mBio.02052-17.

    Article  Google Scholar 

  69. Duebel J, Marazova K, Sahel JA. Optogenetics. Curr Opin Ophthalmol. 2015;26:226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002;296:2395–8.

    Article  CAS  PubMed  Google Scholar 

  72. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bockaert J, Bécamel C. The anxiogenic effects of SSRI are mediated by 5-HT2c receptors of the stria terminalis. Med Sci (Paris). 2017;33:87–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bourin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bourin, M. (2020). Experimental Anxiety Model for Anxiety Disorders: Relevance to Drug Discovery. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_11

Download citation

Publish with us

Policies and ethics