Skip to main content

The Mouse Light–Dark Box Test

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

The light/dark test is based on the innate aversion of rodents to brightly illuminated areas and on the spontaneous exploratory behaviour of the animals, applying mild stressors, i.e. novel environment and light. The test apparatus consists of a small dark secure compartment (one-third) and a large illuminated aversive compartment (two-thirds).

The test was developed with male mice. The strain, weight and age may be crucial factors.

The extent to which an anxiolytic compound can facilitate the exploratory activity depends on the baseline level in the control group. Differences between the type and severity of external stressors might account for variable results reported by different laboratories.

The light–dark test may be useful to predict anxiolytic-like or anxiogenic-like activity in mice. Transitions have been reported to be an index of activity exploration because of habituation over time and the time spent in each compartment to be a reflection of aversion. Classic anxiolytics (benzodiazepines) as well as the newer anxiolytic-like compounds (e.g. serotonergic drugs or drugs acting on neuropeptides receptors) can be detected using this paradigm. It has the advantages of being quick and easy to use, without requiring the prior training of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handley SL. 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacol Ther 1995; 66:103–48.

    PubMed  CAS  Google Scholar 

  2. Gray J. The neuropsychology of anxiety. Oxford: Oxford University Press, 1982.

    Google Scholar 

  3. Rodgers RJ, Cao BJ, Dalvi A, Holmes A. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 1997; 30:289–304.

    PubMed  CAS  Google Scholar 

  4. Crawley JN, Goodwin FK. Preliminary report of a simple animal behaviour for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980; 13:167–70.

    PubMed  CAS  Google Scholar 

  5. File SE. Usefulness of animal models with newer anxiolytics. Clin Neuropharmacol 1992; 15(suppl 1):525A–526A.

    PubMed  Google Scholar 

  6. Njung’e K, Handley SL. Evaluation of marble-burying behaviour as a model of anxiety. 1991; 38:63–7.

    Google Scholar 

  7. Treit D. A comparison of anxiolytic and nonanxiolytic agents in the shock probe buring test for anxiolytics. Pharmacol Biochem Behav 1990; 36:203–5.

    PubMed  CAS  Google Scholar 

  8. De Vry J, Benz U, Schreiber R, Traber J. Shock-induced ultrasonic vocalization in young adults rats : a model for testing putative antianxiety drugs. Eur J Pharmacol 1993; 249:331–39

    PubMed  Google Scholar 

  9. Lister RG. Ethologically-based models of anxiety disorders. Pharmac Ther 1990; 46:321–40.

    CAS  Google Scholar 

  10. Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 2001; 125:141–9.

    PubMed  CAS  Google Scholar 

  11. Costall B, Jones BJ., Kelly ME, Naylor RJ, Tomkins DM. Exploration of mice in a black and white box: validation as a model of anxiety. Pharmacol Biochem Behav 1989; 32:777–85.

    PubMed  CAS  Google Scholar 

  12. Gao B, Cutler MG. Effect of acute administration of the 5-HT3 receptor antagonist, BRL 46470A, on the behavior of mice in a two compartment light-dark box and during social interactions in their home cage and an unfamiliar neutral cage. Neuropharmacology 1992; 31:743–8.

    PubMed  CAS  Google Scholar 

  13. Imaizumi M, Onodera K. The behavioural and biochemical effects of thioperamide, a histamine H3-receptor antagonist, in a light/dark test measuring anxiety in mice. Life Sciences 1993; 53:1675–83.

    PubMed  CAS  Google Scholar 

  14. Young R, Johnson DN. A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol Biochem Behav 1991; 40:739–43.

    PubMed  CAS  Google Scholar 

  15. Belzung C, Misslin R, Vogel E, Dodd RH , Chapouthier G. Anxiogenic effects of methyl-β-carboline-carboxylate in a light/dark choice situation. Pharmacol Biochem Behav 1987; 28:29–33.

    PubMed  CAS  Google Scholar 

  16. Shimada T, Matsumoto K, Osanai M, Matsuda H, Terasawa K, Watanabe H. The modified light/dark transition test in mice: evaluation of classic and putative anxiolytic and anxiogenic drugs. Gen Pharmac 1995; 26:205–10.

    CAS  Google Scholar 

  17. Crawley JN. Neuropharmacologic specificity of a simple model for the behavioural actions of benzodiazepines. Pharmacol Biochem Behav 1981; 15:695–99.

    PubMed  CAS  Google Scholar 

  18. Crawley JN. Exploratory behaviour models of anxiety in mice. Neurosci Biobehav Rev 1985; 9:37–44.

    PubMed  CAS  Google Scholar 

  19. Blumstein LK, Crawley JN. Further characterisation of a simple, automated exploratory model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1983; 18:37–40.

    PubMed  CAS  Google Scholar 

  20. Hascoët M, Bourin M. A new approach to the light/dark procedure in mice. Pharmacol Biochem Behav 1998; 60:645–53.

    PubMed  Google Scholar 

  21. Crawley JN, Davis LG. Base line exploratory activity predicts anxiolytics responsiveness to diazepam in five mouse strains. Brain Res Bull 1982; 8:609–12.

    PubMed  CAS  Google Scholar 

  22. Crawley JN, Skolnick P, Paul SM. Absence of intrinsic antagonist actions of benzodiazepine antagonist on an exploratory model of anxiety in the mouse. Neuropharmacology 1984; 5:531–7.

    Google Scholar 

  23. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzeman RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A , Paylor R. Behavioural phenotypes of inbred mouse strains: implication and recommendations for molecular studies. Psychopharmacology 1997; 132:107–24.

    PubMed  CAS  Google Scholar 

  24. Costall B, Kelly ME, Naylor RJ,Onaivi ES. Actions of buspirone in a putative model of anxiety in the mouse. J Pharm Pharmacol 1988a; 40:494–500.

    PubMed  CAS  Google Scholar 

  25. Costall B, Domeney AM, Gerrard PA, Kelly ME, Naylor RJ. Effects of the 5-HT receptors antagonist GR38032F, ICS 205-930 and BRL 43694 in tests for anxiolytic activity. Br J Pharmacol 1988b; 93(Suppl):195P.

    Google Scholar 

  26. Costall B, Jones BJ, Kelly ME, Naylor RJ, Onaivi ES, Tyers MB. Sites of action of ondansetron to inhibit withdrawal from drugs of abuse. Pharmacol Biochem Behav 1990; 36:97–104.

    PubMed  CAS  Google Scholar 

  27. Costall B, Domeney AM, Hughes J, Kelly ME, Naylor RJ, Woodruff GN. Anxiolytic effects of CCK-B antagonists. Neuropeptides 1991; 19:65–73.

    PubMed  CAS  Google Scholar 

  28. Costall B, Domeney AM, Kelly ME, Tomkins DM, Naylor RJ, Wong EHF, Smith WL, Whiting RL, Eglen R. The effect of the 5-HT3 receptor antagonist, RS 42358-197, in animal models of anxiety. Eur J Pharmacol 1993; 234:91–9.

    PubMed  CAS  Google Scholar 

  29. Gao B and Cutler MG. Effect of acute and subchronic administration of ritanserin on the social behaviour of mice. Neuropharmacology 1993; 32:265–72.

    PubMed  CAS  Google Scholar 

  30. Belzung C, Le Pape G. Comparison of different behavioural test situations used in Psychopharmacology for measurement of anxiety. Physiol Behav 1994; 3:623–28.

    Google Scholar 

  31. Bourin M, Redrobe JP, Hascoët M, Baker GB, Colombel MC. A schematic representation of the psychopharmacological profile of antidepressants. Prog Psychopharmacol Biol Psychiat 1996; 20:1389–402.

    CAS  Google Scholar 

  32. Hascoët M, Colombel MC, Bourin M. Influence of age on behavioural response in the light-dark paradigm. Physiol Behav 1999; 66:567–70.

    PubMed  Google Scholar 

  33. Hascoët M, Bourin M, Nic Dhonnchadha. Á. The influence of buspirone and its metabolite1-PP on the activity of paroxetine in the mouse light dark paradigm and four plates test. Pharmacol Biochem Behav 2000b; 67:45–53.

    PubMed  Google Scholar 

  34. Young R, Johnson DN. Comparative effects of zacopride, GR 38032F, Buspirone and diazepam in the mouse light/dark exploratory model. Soc Neurosci Abstr 1988;14:207.

    Google Scholar 

  35. Bouwknecht J.A., Paylor R. Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Br Res 2002; 136:489–501.

    Google Scholar 

  36. Gullet P.V., Chapouthier G. Intermale aggression and dark/light preference in ten inbred mouse strains. Behav Br Res 1996; 77:211–13.

    Google Scholar 

  37. Mc Ilwain KL, Merriweather MY, Yuva-Paylor L.A, Paylor R. The use of behavioural test batteries: effects of training history. Physiol Behav 2001; 73:705–17.

    CAS  Google Scholar 

  38. Voikar V, Koks S, Vasar E, Rauvala H. Strain and gender differences in the behaviour of mouse lines commonly used in transgenic studies. Physiol Behav 2001; 72:271–81.

    PubMed  CAS  Google Scholar 

  39. Griebel G., Belzung C., Perrault G. and Sanger D.J. Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology 2000; 148:164–70.

    PubMed  CAS  Google Scholar 

  40. Chapouthier G, Bondoux D, Martin B, Desforges C and Launay J.M. Genetic difference in sensitivity to beta carboline: evidence for the involvement of brain benzodiazepine receptors. Brain Res 1991; 553:342–46.

    PubMed  CAS  Google Scholar 

  41. Singer JB, Hill AE, Nadeau JH, Lander ES. Mapping quantitative trait loci for anxiety in chromosome substitution strain of mice. Genetics 2005; 169:855–62.

    PubMed  CAS  Google Scholar 

  42. Takahashi A, Nishi A, Ishii A, Shiroishi T, Koide T. Systematic analysis of emotionality in consomic mouse strains establish from C57BL/6 J and wild-derived MSM/Ms. Genes Brain Behavior. Science direct on line (juil 2008).

    Google Scholar 

  43. Rodgers RJ, Boullier E, Chatzimichalaki P, Cooper GD, Shorten A. Contrasting phenotypes of C57BL/6JOlaHsd, 129SvHsd and 129/SvEv mice in two exploration-based test of anxiety-related behavior. Physiol Behav 2002; 77:301–10.

    PubMed  CAS  Google Scholar 

  44. Mombereau C, Kaupmann K, Froesti W, Sansig G, Van der Putten H, Cryan JF. Genetic and pharmacologic evidence of a role for GABA (B) receptors in the modulation of anxiety and antidepressant-like behaviour. Neuropsychopharmacol 2004; 29:1050–62.

    CAS  Google Scholar 

  45. Jacobson H., Bettler B., Kaupmann K., Cryan J.F. Behavioral evaluation of mice in GABA(B1) receptor isoform in test of unconditioned anxiety. Psychopharmacol 2007; 190:541–3.

    CAS  Google Scholar 

  46. Raud S, Innos J, Abramov U, Reimets A, Soosaar A, Matsui T, Vasar E. Targeted invalidation of CCK2 receptors gene induces anxiolytic-like action in light-dark exploration, but not in fear conditioning test. Psychopharmacoly 2005; 181:347–57.

    CAS  Google Scholar 

  47. Pletnikov MV, Storozheva ZI, Sherstnev VV. Relationship between memory and fear: Developmental and pharmacological studies. Pharmacol Biochem Behav 1996; 54:93–8.

    PubMed  CAS  Google Scholar 

  48. Hoggs S. A review of the validity and variability of the elevated plus maze as an animal model of anxiety. Pharmacol Biochem Behav 1996; 54:21–30.

    Google Scholar 

  49. Sanchez C. 5HT1A receptors play an important role in modulation of behaviour of rats in a two-compartment black and white box. Behav Pharmacol 1996; 7:788–97.

    PubMed  CAS  Google Scholar 

  50. Górka Z, Maj J. Effects of repeated treatment with antidepressant drugs on the 24 hour behaviour in the light-dark synchronised mice. Pol J Pharmacol Pharm 1986; 38:493–9.

    PubMed  Google Scholar 

  51. Onaivi ES, Martin BR. Neuropharmacological and physiological validation of a computer-controlled two compartment black and white box for the assessment of anxiety. Prog Neuropsychopharmacol Biol Psychiat 1989; 13:963–76.

    CAS  Google Scholar 

  52. Barnes NM, Costall B, Kelly ME, Onaivi ES, Naylor RJ. Ketotifen and its analogues reduce aversive responding in the rodent. Pharmacol Biochem Behav 1990; 37:785–93.

    PubMed  CAS  Google Scholar 

  53. Barry JM, Costall B, Kelly ME, Naylor RJ, Onaivi E.S. A simple habituation test in the mouse. Br J Pharmacol 1987; 92:651P.

    Google Scholar 

  54. Imaizumi M, Suzuki T, Machida H, Onodera K. A fully automated apparatus for a light/dark test measuring anxiolytic or anxiogenic effects of drugs in mice. Jpn. J Psychopharmacol 1994; 14:83–91.

    CAS  Google Scholar 

  55. Lapin IP. A decreased frequency of peeking out from the dark compartment-the only constant index of the effect of anxiogenes on the behaviour of mice in light-darkness chamber. Zh Vyssh Nerv Deiat IM. I. P. Pavlova 1999; 49:521–6.

    PubMed  CAS  Google Scholar 

  56. Griebel G, Perrault GH, Sanger DJ. CCK receptor antagonists in animal models of anxiety: comparison between exploration tests, conflict procedures and a model based on defensive behaviours. Behav Pharmacol 1997a; 8:549–60.

    PubMed  CAS  Google Scholar 

  57. Griebel G, Lanfumey L, Blanchard DC, Rettori MC, Guaardiola-Lemaitre B, Hamon M, Blanchard RJ. Preclinical profile of the mixed 5-HT 1A/5-HT2A receptor antagonist S21357. Pharmacol. Biochem Behav 1996; 54:509–16.

    PubMed  CAS  Google Scholar 

  58. Rodgers RJ, Shepherd JH. Influence of prior maze experience on behaviour response to diazepam in the elevated plus maze and light/dark test of anxiety in mice. Psychopharmacology 1993; 113:237–42.

    PubMed  CAS  Google Scholar 

  59. Rodgers RJ. Animal models of ‘anxiety’: where next? Behav Pharmacol 1997; 8:477–96.

    PubMed  CAS  Google Scholar 

  60. Young R, Johnson DN. Comparison of routes of administration and time course effects of zacopride and buspirone in mice using an automated light/dark test. Pharmacol Biochem Behav 1991b; 40:733–37.

    PubMed  CAS  Google Scholar 

  61. De Angelis L. The anxiogenic-like effects of pentylenetetrazole in mice treated chronically with carbamazepine or valproate. Meth Find Exp Clin Pharmacol 1992; 14:767–71.

    Google Scholar 

  62. Kilfoil T, Michel A, Montgomery D, Whiting RL. Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacology 1989; 28:901–905.

    PubMed  CAS  Google Scholar 

  63. Yasumatsu H, Morimoto Y, Yamamoto Y, Takehara S, Fukuda TF, Nako T, Setoguchi M. The pharmacological properties of Y-23684, a benzodiazepine receptor partial agonist. Br. J. Pharmacol 1994; 11:1170–8.

    Google Scholar 

  64. Belzung C, Misslin R, Vogel E. Behavioural effects of the benzodiazepine receptor partial agonist RO 16-6028 in mice. Psychopharmacology 1989; 97:388–91.

    PubMed  CAS  Google Scholar 

  65. Smith CB, Crawley JN. Anxiolytic action of CGS 9896 on mouse explorator behaviour. Eur J Pharmacol 1986; 132:259–262.

    PubMed  CAS  Google Scholar 

  66. Wieland S, Lan NC, Mirasedeghi S, Gee KW. Anxiolytic activity of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Br Res 1991; 565:263–68.

    CAS  Google Scholar 

  67. Griebel G. 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more then 30 years of research. Pharmacol Ther 1995; 65:319–95.

    PubMed  CAS  Google Scholar 

  68. Barret JE, Vanover KE. 5-HT receptors as targets for the development of novel anxiolytic drugs/ models, mechanisms and future directions. Psychopharmacology 1993; 112:1–12.

    Google Scholar 

  69. Handley SL, McBlane JW. Serotonin mechanisms in animal models of anxiety. Braz J Med Biol Res 1993; 26:1–13.

    PubMed  CAS  Google Scholar 

  70. Handley SL, McBlane JW, Critchley MA, Njung’e K. Multiple serotonin mechanisms in animal models of anxiety: environmental, emotional and cognitive factors. Behav Brain Res 1993; 58:203–10.

    PubMed  CAS  Google Scholar 

  71. Lopez-Rubalcava C, Saldivar A, Fernandez-Guasti A. Interaction of GABA and serotonin in the anxiolytic action of diazepam and serotonergic anxiolytics. Pharmacol Biochem Behav 1992; 43:433–40.

    PubMed  CAS  Google Scholar 

  72. Bill DJ, Fletcher A, Knight M. Actions of 5HT1A ligands and standard anxiolytics on mouse exploratory behaviour in a two compartment light: dark arena. Br. J. Pharmacol 1989; 98 (Suppl):679P.

    Google Scholar 

  73. Misslin R, Griebel G, Saffroy-Spittler M, Vogel E. Anxiolytic and sedative effects of 5-HT1A ligands, 8-OHDPAT and MDL 73005EF, in mice. Neuroreport 1990; 1:267–70.

    PubMed  CAS  Google Scholar 

  74. Schipper J, Van Der Poel AM, Mos J, Van Der Heyden JAM, Olivier B. Flesinoxan: anxiolytic activity in animal models. In SEROTONIN 1991, 5-hydroxytryptamine-CNS receptors and brain function, p. 138, Birmingham, 14–17th July 1991.

    Google Scholar 

  75. Fernandez-Guasti A, Lopez-Rubalcava C. Evidence for the Involvement of the 5-HT1A receptor in the anxiolytic action of indorate and ipsapirone. Psychopharmacology 1990; 107:354–358.

    Google Scholar 

  76. Metzenauer P, Barnes NM, Costall B, Gozlan H, Hamon M, Kelly ME, Murphy DA, Naylor RJ. Anxiolytic like action of anpirtoline in a mouse light dark aversion paradigm. NeuroReport 1992; 3:527–29.

    PubMed  CAS  Google Scholar 

  77. Griebel G, Misslin JR, Pawlowski M, Vogel E. m- Chlorophenylpiperazine enhances neophobic and anxious behaviour in mice. NeuroReport 1991; 2:627–9.

    PubMed  CAS  Google Scholar 

  78. Nic Dhonnchadha BA, Bourin M, Hascoët M. Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety Behav Brain Res 2003; 140:203–14.

    PubMed  CAS  Google Scholar 

  79. Barnes NM, Cheng CHK, Costall B, Ge J, Kelly ME, Naylor RJ. Profiles of interaction of R (+)/S (–)-zacopride and anxiolytic agents in a mouse model. Eur J Pharmacol 1992; 218:91–100.

    PubMed  CAS  Google Scholar 

  80. Tyers MB, Costall B, Domeney A, Jones BJ, Kelly M.E, Naylor RJ, Oakeley N. The anxiolytic activities of 5-HT3 antagonists in laboratory animals. Neurosci Lett 1987; 29:S68.

    Google Scholar 

  81. Bill DJ, Fletcher A, Glenn BD , Knight M.. Behavioural studies of WAY 100289, a novel 5-HT3 receptor antagonist, in two animal models of anxiety. Eur J Pharmacol 1992; 218:327–34.

    PubMed  CAS  Google Scholar 

  82. Borsini F, Brambilla A, Cesana R, Donetti A. The effects of DAU 6215, a novel 5HT3 antagonist in animal models of anxiety. Pharmacol Res 1993;27:151–64.

    PubMed  CAS  Google Scholar 

  83. Kennett GA, Pittaway K, Blackburn TP. Evidence that 5-HT2C receptor antagonists are anxiolytic in the rat Geller-Seifter model of anxiety. Psychopharmacology 1994; 114:90–96.

    PubMed  CAS  Google Scholar 

  84. Cheng CHK, Costall B, Kelly ME, Naylor RJ. Actions of 5-hydroxytryptophan to inhibit and disinhibit mouse behaviour in the light/dark test. Eur J Pharmacol 1994; 255:39–49.

    PubMed  CAS  Google Scholar 

  85. Sanchez C. Serotonergic mechanisms involved in the exploratory behaviour of mice in a fully automated two-compartment black and white test box. Pharmacol Toxicol 1995; 77:71–8.

    PubMed  CAS  Google Scholar 

  86. Costall B, Naylor RJ. Behavioural interactions between 5-hydroxytryptophan neuroleptic agents and 5-HT receptor antagonists in modifying rodent responding to aversive situations. Br J Pharmacol 1995; 116:2989–99.

    PubMed  CAS  Google Scholar 

  87. Costall B, Naylor RJ. The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test. Br J Pharmacol 1997; 122:1105–8.

    PubMed  CAS  Google Scholar 

  88. Griebel G, Perrault G, Sanger DJ. A comparative study of the effects of selective and non-selective 5-HT2C receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 1997b; 36:793–802.

    PubMed  CAS  Google Scholar 

  89. Higgins GA, Jones BJ, Oakley NR, Tyers MB. Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3 receptor antagonists. Psychopharmacology 1991; 104:545–51.

    PubMed  CAS  Google Scholar 

  90. Stefanski R, Palejo W, Bidzinski A, Kostowski W, Plaznik A. Serotonergic innervation of the hippocampus and nucleus accumbens septi and the anxiolytic-like action of the 5-HT3 receptor antagonists. Neuropharmacology 1993; 32:987–93.

    PubMed  CAS  Google Scholar 

  91. Kilpatrick GJ, Bunce KT, Tyers MB. 5-HT3 receptors. Med Res Rev. 1990; 10:441–75.

    PubMed  CAS  Google Scholar 

  92. De Angelis L, Furlan C. The anxiolytic like properties of two selective MAOIs, moclobemide and selegiline, in a standard and an enhanced light/dark aversion test. Pharmacol Biochem Behav 2000; 65:649–53.

    PubMed  Google Scholar 

  93. Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ. A comparison of the effects of diazepam versus several typical and atypical antidepressant drugs in an animal model of anxiety. Psychopharmacology 1989; 97:277–79.

    PubMed  CAS  Google Scholar 

  94. Lightowler S, Kennett GA, Williamson IJ, Blackburn TP, Tulloch IF. Anxiolytic like effect of paroxetine in a rat social interaction test. Pharmacol Biochem Behav 1994; 49:281–5.

    PubMed  CAS  Google Scholar 

  95. Matto V, Allikmets L, Harro J. The mechanism of anxiogenic-like effect of antidepressants on exploratory behaviour in rats. Pharmacol Toxicol 1995; 76(suppl.3):53.

    Google Scholar 

  96. File SE, Pellow S, Chopin P. Can animal test of anxiety detect anti-panic compounds? Neurosci Abstr 1985; 11:273.

    Google Scholar 

  97. Sanchez C, Meier E. Behavioural profiles of SSRIs in animal models of depression, anxiety and aggression: are they all alike? Psychopharmacology 1997; 129:197–205.

    PubMed  CAS  Google Scholar 

  98. Griebel G, Moreau JL, Jenck F, Martin R, Misslin JR. Acute and chronic treatment with 5-HT reuptake inhibitors differentially modulate emotional responses in anxiety models in rodents. Psychopharmacology 1994; 113:463–70.

    PubMed  CAS  Google Scholar 

  99. Bourin M, Nic Dhonnchadha BA, Colombel MC, Dib M, Hascoët M. Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Br Res 2001; 124:87–95.

    CAS  Google Scholar 

  100. Costall B, Naylor R. Anxiolytic potential of 5-HT3 receptor antagonists. Pharmacol Toxicol 1992; 70:157–62.

    PubMed  CAS  Google Scholar 

  101. File SE, Andrews N, Hoggs S. New developments in animal tests of anxiety. Advances in the Neurobiology of Anxiety disorders.Ed. Westenberg H.G.M., Den Boer J.A. and Murphy D.L., 1996, pp.61–79.John Wiley and Sons Ltd.

    Google Scholar 

  102. Olivier B, Van Wijngaarden I, Soudijn W. 5-HT3 receptor antagonists and anxiety; a preclinical and clinical review. Eur Neuropsychopharm 2000; 10:77–95.

    CAS  Google Scholar 

  103. Pellow S, Chopin P, File SE, Briley M. Validation of open/closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 1985; 14:145–67.

    Google Scholar 

  104. Imaizumi M, Miyazaki S, Onodera K. Effects of xanthine derivatives in a light/dark test in mice and contribution of adenosine receptors. Meth Find Exp Clin Pharmacol 1994; 16:639–44.

    CAS  Google Scholar 

  105. Van Megen HJGM, Westenberg HGM, Den Boer JA, Kahn RS. Cholecystokinin in anxiety. Eur Neuropsychopharm 1996; 6:263–80.

    Google Scholar 

  106. Bourin M, Baker GB, Bradwejn J. Neurobiology of panic disorder. J Psychosis Res 1998a; 44:161–80.

    Google Scholar 

  107. Belzoni C, Pineal N, Bautzen A, Muslin R. PD135158, a CCK-B antagonist, reduces “state,” but not “trait” anxiety in mice. Pharmacology Brioche Behave 1994; 49:433–36.

    Google Scholar 

  108. Bourin M. Cholecystokinin as a target for neuropsychiatric drugs. Drug News Perspect 1998b; 11:342–49.

    PubMed  CAS  Google Scholar 

  109. Arborelius L, Owens MJ, Bissette G, Plotsky PM, Nemeroff CB. The role of corticotrophin-releasing factor in depression and anxiety. J Endocrinol 1999; 160:1–12

    PubMed  CAS  Google Scholar 

  110. Griebel G, Perrault G, Sanger DJ. Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology 1998; 138:55–66.

    PubMed  CAS  Google Scholar 

  111. Zernig G, Troger J, Saria A. Different behavioral profiles of the non-peptide substance P (NK1) antagonists CP-96,345 and RP 67580 in Swiss albino mice in the black-and-white box. Neurosci Lett 1993; 151:64–66.

    PubMed  CAS  Google Scholar 

  112. Sanchez C, Arnt J, Costall B, Kelly ME, Meier E, Naylor RJ, Perregaard J. The selective sigma 2-ligand Lu 28-179 has potent anxiolytic-like effects in rodents. J Pharmacol Exp Ther 1997; 283:1323–32.

    PubMed  CAS  Google Scholar 

  113. Rex A, Barth T, Voigt JP, Domeney AM, Fink H. Effects of cholecystokinin tetrapeptide and sulfated cholecystokinin octapeptide in rat models of anxiety. Neurosci Lett. 1994; 172:139–42

    PubMed  CAS  Google Scholar 

  114. Daugé V, Roques BP. Opioid and CCK systems in anxiety and reward. In: Cholecystokinin and Anxiety: from Neuron to Behavior, 1995. pp 152–171, Bradwejn, J. and Vasar, E. (eds.) R. G. Landes Company, Georgetown.

    Google Scholar 

  115. Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock RD and Woodruff GN. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc. Natl. Acad. Sci. USA 1990; 87:6728–32.

    PubMed  CAS  Google Scholar 

  116. Singh L, Field MJ, Hughes J, Menzies R, Oles RJ, Vass CA and Woodruff GN. The behavioural properties of CI-988, a selective cholecystokininB receptor antagonist. Br. J. Pharmacol. 1991; 104:239–45.

    PubMed  CAS  Google Scholar 

  117. Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Malfrand JP, Soubrié P. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2cyclopropyl-1-(-3-fluoro-4-methylphenyl)ethyl]5-methyl-N–(2-propynyl)-1,3-thiazol-2-amine Hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor1 receptor antagonist. II characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002; 301:333–45.

    PubMed  CAS  Google Scholar 

  118. Rutkowska M., Jamontt J., Gliniak H. Effect of cannabinoids on the anxiety-like response in mice. Pharmacological report. 2006; 58:200–6.

    CAS  Google Scholar 

  119. Griebel G. Variability in the effects of-5HT related compounds in experimental models of anxiety: evidence for multiple mechanisms of 5-HT in anxiety or never ending story? Pol J Pharmacol 1996; 48:129–36.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hascoët, M., Bourin, M. (2009). The Mouse Light–Dark Box Test. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics