Skip to main content
Log in

Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

5-HT1A receptor knockout (1AKO) mice have a robust anxiety phenotype. Tissue-specific “rescue” strategies and electrophysiology have implicated a critical role for postsynaptic 5-HT1A receptors, particularly in the CA1 region of the hippocampus.

Objectives

In this study, we evaluated differences in membrane properties and synaptic activity in CA1 hippocampal pyramidal cells between 1AKOs and wild-type (WT) controls to better understand the cellular correlates of anxiety in this mouse model.

Methods

Whole-cell patch-clamp recordings were conducted in CA1 pyramidal cells in hippocampal brain slices from 1AKOs and WTs that had previously been screened for anxiety with the elevated-plus maze. Spontaneous miniature inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs) and stimulus-evoked eIPSCs and eEPSCs were recorded in addition to the effect of the benzodiazepine agonist diazepam or the inverse agonist FG 7142 on γ-aminobutyric acid (GABA)ergic eIPSCs.

Results

Evoked EPSC amplitude was greater in 1AKOs than WTs. When subjects were pooled across genotypes, anxiety measures correlated with eEPSC amplitude, indicating enhanced postsynaptic glutamate synaptic activity under conditions of synaptic activation in anxious subjects. While GABA synaptic activity and sensitivity to diazepam were not affected by genotype or correlated with anxiety, sensitivity to the anxiogenic FG 7142 was smaller in anxious subjects.

Conclusions

These data indicate enhanced postsynaptic glutamate receptor sensitivity and decreased GABAergic inhibition by a benzodiazepine inverse agonist in CA1 hippocampal neurons of anxious mice are produced by deletion of the 5-HT1A receptor. These data provide new information about interactions between 5-HT, GABA, and glutamate systems during the expression of chronic anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269

    Article  CAS  PubMed  Google Scholar 

  • Allan AM, Baier LD, Zhang X (1992) Effects of lorazepam tolerance and withdrawal on GABAA receptor-operated chloride channels. J Pharmacol Exp Ther 261:395–402

    CAS  PubMed  Google Scholar 

  • Andrews N, Hogg S, Gonzalez LE, File SE (1994) 5-HT1A receptors in the median raphe nucleus and dorsal hippocampus may mediate anxiolytic and anxiogenic behaviours respectively. Eur J Pharmacol 264:259–264

    Article  CAS  PubMed  Google Scholar 

  • Appenrodt E, Kroning G, Schwarzberg H (1999) Increased plasma ACTH in rats exposed to the elevated plus-maze is independent of the pineal gland. Psychoneuroendocrinology 24:833–838

    Article  CAS  PubMed  Google Scholar 

  • Bailey SJ, Toth M (2004) Variability in the benzodiazepine response of serotonin 5-HT1A receptor null mice displaying anxiety-like phenotype: evidence for genetic modifiers in the 5-HT-mediated regulation of GABA(A) receptors. J Neurosci 24:6343–6351

    Article  CAS  PubMed  Google Scholar 

  • Barbaccia ML, Costa E, Ferrero P, Guidotti A, Roy A, Sunderland T, Pickar D, Paul SM, Goodwin FK (1986) Diazepam-binding inhibitor. A brain neuropeptide present in human spinal fluid: studies in depression, schizophrenia, and Alzheimer’s disease. Arch Gen Psychiatry 43:1143–1147

    CAS  PubMed  Google Scholar 

  • Bourin M, Hascoet M (2001) Drug mechanisms in anxiety. Curr Opin Investig Drugs 2:259–265

    CAS  PubMed  Google Scholar 

  • Britton KT, Lee G, Koob GF (1988) Corticotropin releasing factor and amphetamine exaggerate partial agonist properties of benzodiazepine antagonist Ro 15-1788 in the conflict test. Psychopharmacol (Berl) 94:306–311

    CAS  Google Scholar 

  • Cagetti E, Liang J, Spigelman I, Olsen RW (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol Pharmacol 63:53–64

    Article  CAS  PubMed  Google Scholar 

  • Calogero AE, Gallucci WT, Chrousos GP, Gold PW (1988) Interaction between GABAergic neurotransmission and rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Res 463:28–36

    Article  CAS  PubMed  Google Scholar 

  • Carli M, Tatarczynska E, Cervo L, Samanin R (1993) Stimulation of hippocampal 5-HT1A receptors causes amnesia and anxiolytic-like but not antidepressant-like effects in the rat. Eur J Pharmacol 234:215–221

    Article  CAS  PubMed  Google Scholar 

  • Charney DS, Drevets WC (2002) Neurobiological basis of anxiety disorders. In: Davis KL, Charney DS, Coyle J, Nemeroff C (eds) Neuropsychopharmacology: the Fifth Generation of Progress. American College of Neuropsychopharmacology. Lippincott Williams & Wilkins, Baltimore, MD, pp 901–930

    Google Scholar 

  • Cossart R, Epsztein J, Tyzio R, Becq H, Hirsch J, Ben-Ari Y, Crepel V (2002) Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons. Neuron 35:147–159

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49:325–344

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN (1996) Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci 19:181–182

    Article  CAS  PubMed  Google Scholar 

  • Crawley J (2007) What’s wrong with my mouse: behavioral phenotyping of transgenic and knockout mice. John Wiley and Sons, Hoboken

    Google Scholar 

  • Dos SL, De Andrade TG, Zangrossi JH (2008) 5-HT1A receptors in the dorsal hippocampus mediate the anxiogenic effect induced by the stimulation of 5-HT neurons in the median raphe nucleus. Eur Neuropsychopharmacol 18:286–294

    Article  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  CAS  PubMed  Google Scholar 

  • File SE (2001) Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 125:151–157

    Article  CAS  PubMed  Google Scholar 

  • File SE, Gonzalez LE (1996) Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphe and ventral hippocampus. Pharmacol Biochem Behav 54:123–128

    Article  CAS  PubMed  Google Scholar 

  • File SE, Gonzalez LE, Andrews N (1996) Comparative study of pre- and postsynaptic 5-HT1A receptor modulation of anxiety in two ethological animal tests. J Neurosci 16:4810–4815

    CAS  PubMed  Google Scholar 

  • File SE, Mabbutt PS, Hitchcott PK (1990) Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacol (Berl) 102:98–101

    Article  CAS  Google Scholar 

  • File SE, Zangrossi H Jr, Sanders FL, Mabbutt PS (1994) Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacol (Berl) 113:543–546

    Article  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R (2001) Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav Brain Res 125:13–21

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Lacefield CO, Kentros CG, Hen R (2005) State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice. J Neurosci 25:6509–6519

    Article  CAS  PubMed  Google Scholar 

  • Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  CAS  PubMed  Google Scholar 

  • Gray JA, McNaughton N (2003) The neuropsychology of anxiety: an enquiry into the function of the septo-hippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Griebel G, Moreau JL, Jenck F, Martin JR, Misslin R (1993) Some critical determinants of the behavior of rats in the elevated plus-maze. Behav Process 29:37–47

    Article  Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  CAS  PubMed  Google Scholar 

  • Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA 95:15049–15054

    Article  CAS  PubMed  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hogg S, Andrews N, File SE (1994) Contrasting behavioural effects of 8-OH DPAT in the dorsal raphe nucleus and ventral hippocampus. Neuropharmacology 33:343–348

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L, Sapolsky RM (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134

    Article  CAS  PubMed  Google Scholar 

  • Jolas T, Schreiber R, Laporte AM, Chastanet M, De VJ, Glaser T, Adrien J, Hamon M (1995) Are postsynaptic 5-HT1A receptors involved in the anxiolytic effects of 5-HT1A receptor agonists and in their inhibitory effects on the firing of serotonergic neurons in the rat? J Pharmacol Exp Ther 272:920–929

    CAS  PubMed  Google Scholar 

  • Kataoka Y, Shibata K, Miyazaki A, Inoue Y, Tominaga K, Koizumi S, Ueki S, Niwa M (1991) Involvement of the dorsal hippocampus in mediation of the antianxiety action of tandospirone, a 5-hydroxytryptamine1A agonistic anxiolytic. Neuropharmacology 30:475–480

    Article  CAS  PubMed  Google Scholar 

  • Kostowski W, Plaznik A, Stefanski R (1989) Intra-hippocampal buspirone in animal models of anxiety. Eur J Pharmacol 168:393–396

    Article  CAS  PubMed  Google Scholar 

  • Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993

    CAS  PubMed  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacol (Berl) 92:180–185

    CAS  Google Scholar 

  • Lo IL, Gross C (2008) Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci 28:6250–6257

    Article  Google Scholar 

  • Lucki I (1996) Serotonin receptor specificity in anxiety disorders. J Clin Psychiatry 57 Suppl 6:5–10

    CAS  PubMed  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  CAS  PubMed  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • McEwen BS, Gould EA, Sakai RR (1992) The vulnerability of the hippocampus to protective and destructive effects of glucocorticoids in relation to stress. Br J Psychiatry 15(Suppl):18–23

    Google Scholar 

  • McEwen BS, Magarinos AM (1997) Stress effects on morphology and function of the hippocampus. Ann NY Acad Sci 821:271–284

    Article  CAS  PubMed  Google Scholar 

  • Menard J, Treit D (1998) The septum and the hippocampus differentially mediate anxiolytic effects of R(+)-8-OH-DPAT. Behav Pharmacol 9:93–101

    CAS  PubMed  Google Scholar 

  • Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–613

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244

    Article  CAS  PubMed  Google Scholar 

  • Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, Eckelman W, Herscovitch P, Charney DS, Drevets WC (2004) Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 24:589–591

    Article  CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 95:10734–10739

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Groenink L, Oosting RS, van der GJ M, RA OB (2002) GABA(A)-benzodiazepine receptor complex sensitivity in 5-HT(1A) receptor knockout mice on a 129/Sv background. Eur J Pharmacol 447:67–74

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  • Phillips TJ, Hen R, Crabbe JC (1999) Complications associated with genetic background effects in research using knockout mice. Psychopharmacol (Berl) 147:5–7

    Article  CAS  Google Scholar 

  • Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95:14476–14481

    Article  CAS  PubMed  Google Scholar 

  • Ravindran LN, Stein MB (2010) The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry 71:839–854

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF (1999) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 68:47–53

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Lee C, Shepherd JK (1992) Effects of diazepam on behavioural and antinociceptive responses to the elevated plus-maze in male mice depend upon treatment regimen and prior maze experience. Psychopharmacol (Berl) 106:102–110

    Article  CAS  Google Scholar 

  • Rodgers RJ, Shepherd JK (1993) Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacol (Berl) 113:237–242

    Article  CAS  Google Scholar 

  • Sandford JJ, Argyropoulos SV, Nutt DJ (2000) The psychobiology of anxiolytic drugs. Part 1: Basic neurobiology. Pharmacol Ther 88:197–212

    Article  CAS  PubMed  Google Scholar 

  • Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA 97:14731–14736

    Article  CAS  PubMed  Google Scholar 

  • Schreiber R, De Vry J (1993) Neuronal circuits involved in the anxiolytic effects of the 5-HT1A receptor agonists 8-OH-DPAT ipsapirone and buspirone in the rat. Eur J Pharmacol 249:341–351

    Article  CAS  PubMed  Google Scholar 

  • Sibille E, Pavlides C, Benke D, Toth M (2000) Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 20:2758–2765

    CAS  PubMed  Google Scholar 

  • Skelton KH, Nemeroff CB, Knight DL, Owens MJ (2000) Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J Neurosci 20:1240–1248

    CAS  PubMed  Google Scholar 

  • Smith SS, Gong QH, Li X, Moran MH, Bitran D, Frye CA, Hsu FC (1998) Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J Neurosci 18:5275–5284

    CAS  PubMed  Google Scholar 

  • Stefanski R, Palejko W, Bidzinski A, Kostowski W, Plaznik A (1993) Serotonergic innervation of the hippocampus and nucleus accumbens septi and the anxiolytic-like action of midazolam and 5-HT1A receptor agonists. Neuropharmacology 32:977–985

    Article  CAS  PubMed  Google Scholar 

  • Treit D, Menard J, Royan C (1993) Anxiogenic stimuli in the elevated plus-maze. Pharmacol Biochem Behav 44:463–469

    Article  CAS  PubMed  Google Scholar 

  • Van Sickle BJ, Xiang K, Tietz EI (2004) Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 29:1994–2006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Mark Geyer and Victoria Risbrough in the Dept. of Psychiatry at the University of California, San Diego for the generous donation of breeding pairs of 129/Sv 5-HT1A knockout mice and wild-type controls for use in these studies. We thank Alessandra Cathel for her technical assistance and contributions to electrophysiological studies. This work was supported by a Young Investigator Award from the National Association of Research on Schizophrenia and Depression (NARSAD) and a National Institute of Mental Health grant (MH 63301) issued to Dr. Kirby and by National Institute of Mental Health grants (MH 48125 and MH 63078) issued to Dr. Beck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn G. Kirby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman-Daniels, E., Beck, S.G. & Kirby, L.G. Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice. Psychopharmacology 213, 453–463 (2011). https://doi.org/10.1007/s00213-010-2030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2030-5

Keywords

Navigation