Skip to main content

Impact of Pretreatment Technologies for Biomass to Biofuel Production

  • Chapter
  • First Online:
Substrate Analysis for Effective Biofuels Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Lignocellulose biomass (LCB) is a sustainable resource and raw materials for various products of human uses (fuel, adhesive, bioplastic, biopolymer, bionanomaterials, phenolics, etc.), biofuel being on the top. LCB however is a complex mass of three very different types of chemicals such as lignin, hemicelluloses, and cellulose. A pretreatment technique is applied to weaken or break the linkages between and within these three components. An ideal pretreatment technology to be used must ensure obtainment of three components from LCB in the purest form, at an affordable cost without concurrent production of any toxic by-products. For the last many decades, extensive works have been carried out with the objective to find out nearly an ideal pretreatment method. As a consequence, a number of pretreatment techniques have been reported that can be grouped into five major classes such as physical, physicochemical, chemical, biological, and nanoscale methods. They have their own pros and cons, and thus search for that ideal technique or improvising an existing one is still going on. In the following section, a critical assessment of the reported techniques under the above said categories and their impact on breaking of recalcitrance of LCB and in turn possible impact on 2G bioethanol technology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010–2011

    Article  CAS  Google Scholar 

  • Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280

    Article  CAS  Google Scholar 

  • Abe M, Yamada T, Ohno H (2014) Dissolution of wet wood biomass without heating. RSC Adv 4:17136–17140

    Article  CAS  Google Scholar 

  • An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171

    Article  CAS  Google Scholar 

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crop Prod 65:565–571

    Article  CAS  Google Scholar 

  • Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crop and new uses. ASHS press, Alexandria, pp 17–21

    Google Scholar 

  • Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2014) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 00:1–5

    Google Scholar 

  • Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R, Barakat A, Mayer C, Solhy Arancon RAD, De Vries H (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127. https://doi.org/10.1039/C4RA07568D

    Article  CAS  Google Scholar 

  • Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the Pretreatment of Lignocellulosic biomass for value-added products. Front Energy Res 6:141. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  • Benazzi T, Calgaroto S, Dalla Rosa C, Vladimir Oliveira J, Mazutti MA (2013) Hydrolysis of sugarcane bagasse using supercritical carbon dioxide to obtain fermentable sugars. J Chem Technol Biotechnol 88:1766–1768

    Article  CAS  Google Scholar 

  • Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831

    Article  CAS  Google Scholar 

  • Ben-Ghedalia D, Shefet G (1983) Chemical treatments for increasing the digestibility of cotton straw. J Agric Sci 100:393–400

    Article  CAS  Google Scholar 

  • Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013, Article ID 719607, 21 pages. https://doi.org/10.1155/2013/719607

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841

    Article  CAS  Google Scholar 

  • Borand MN, Karaosmanoglu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sust Energy 10:033104

    Article  CAS  Google Scholar 

  • Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550–583. https://doi.org/10.1039/c2gc36364j

    Article  CAS  Google Scholar 

  • Brandt-Talbot A, Gschwend FJ, Fennell PS, Lammens TM, Tan B, Weale J et al (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102

    Article  CAS  Google Scholar 

  • Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenerg Res 3:123–133

    Google Scholar 

  • Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  Google Scholar 

  • Cai H, Li C, Wang A, Xu G, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338

    Article  CAS  Google Scholar 

  • Candido RG, Godoy GG, Gonçalves AR (2012) Study of Sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Acad Sci Eng Technol 61:101–105

    Google Scholar 

  • Carvalho DM, Olena Sevastyanova O, Queiroz JH, Colodette JL (2016) Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energy Convers Manag 124:315–324

    Article  CAS  Google Scholar 

  • Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19

    Article  Google Scholar 

  • Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74:135–159

    Article  CAS  Google Scholar 

  • Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biomass Biotechnol 94:1–28

    Article  CAS  Google Scholar 

  • Chen SX, Yong Q, Xu Y, Zhu JJ, Yu SY (2009) Study on dilute-acid pretreatment of corn stalk. Chem Ind For Prod 29:27–32

    Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8

    Article  CAS  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Chen T, Xiong C, Tao Y (2018) Enhanced hydrolysis of cellulose in ionic liquid using Mesoporous ZSM-5. Molecules 23:529. https://doi.org/10.3390/molecules23030529

    Article  CAS  Google Scholar 

  • Cheng F, Wang H, Chatel G, Gurau G, Rogers RD (2014) Facile pulping of lignocellulosic biomass using choline acetate. Bioresour Technol 164:394–401

    Article  CAS  Google Scholar 

  • Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12(7):1253–1262

    Article  CAS  Google Scholar 

  • Chou WT, Lai MY, Huang KS (2010) Method of recovering aqueous N-Methylmopholine-NOxide solution used in production of Lyocell fiber. US Patent no. 201102264271A

    Google Scholar 

  • Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14

    Article  Google Scholar 

  • Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Xu D, Mentel J, Chuang YD, Simmons AB, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6:52

    Article  CAS  Google Scholar 

  • da Silva LV, JBL S, Correa-guimarães A, Martín-Ramos P, Hernándeznavarro S, Sánchez-Bascones M, Navas-Gracia LM, Pérez-Lebeña E, Martín-Gil J (2016) Efficient microwave-assisted acid hydrolysis of lignocellulosic materials into total reducing sugars in ionic liquids. Cellul Chem Technol 50(7–8):761–770

    Google Scholar 

  • Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  CAS  Google Scholar 

  • De María PD (2014) Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol 89(1):11–18. https://doi.org/10.1002/jctb.4201

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energ Sources A 30(1):27–37

    Article  CAS  Google Scholar 

  • Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181

    Article  CAS  Google Scholar 

  • Du W, Yu H, Song L, Zhang J, Weng C, Ma F et al (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37

    Article  CAS  Google Scholar 

  • Duff SJB, Murrayh WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • Ebringerová A, Hromadkova Z, Heinze TH (2005) Hemicellulose. Adv Polym Sci 128:1–68

    Google Scholar 

  • Eda S, Ohnishi A, Kato K (1976) Xvlan isolated from the stalk of NicOliana labacul1l. Agric Biol Chem 40:359–364

    CAS  Google Scholar 

  • El-Naggar NE, Deraz S, Khalil A (2014) Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology 13:1–21. https://doi.org/10.3923/biotech.2014.1.21

    Article  CAS  Google Scholar 

  • Eta V, Mikkola JP (2016) Deconstruction of nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465

    Article  CAS  Google Scholar 

  • Fan LL, Zhang YN, Liu SY, Zhou N, Chen P, Cheng YL, Addy M, Lu Q, Omar MM, Liu YH et al (2017) Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters. Bioresour Technol 241:1118–1126

    Article  CAS  Google Scholar 

  • Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A (2017) A review of water-resistant hemicellulose-based materials: processing and applications. ChemSusChem 10:305–323

    Article  CAS  Google Scholar 

  • Faulon J, Carlson GA et al (1994) A three-dimensional model for lignocellulose from gymnospermous wood. Org Geochem 21:1169–1179

    Article  CAS  Google Scholar 

  • Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass. Biomass Bioenergy 34(12):1885–1895

    Article  CAS  Google Scholar 

  • Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750

    Article  CAS  Google Scholar 

  • Gabhane J, Prince William SPM, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102

    Article  CAS  Google Scholar 

  • Galia A, Schiavo B, Antonetti C, Galletti AMR, Interrante L, Lessi M, Scialdone O, Valenti MG (2015) Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnol Biofuels 8:218. https://doi.org/10.1186/s13068-015-0398-5

    Article  CAS  Google Scholar 

  • George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R et al (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734

    Article  CAS  Google Scholar 

  • Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water extractable arabinoxylans. J Cereal Sci 16:53–67

    Article  CAS  Google Scholar 

  • Gupta R, Lee YY (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour Technol 101:8185–8191

    Article  CAS  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111(5):3508–3576

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  Google Scholar 

  • Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem 18(9):2736–2744

    Article  CAS  Google Scholar 

  • Harmsen PFH, Huijgen WJJ, Lopez Bermudez LM, Bakkar RRC (2010) Literature review of physical and chemical pretreatment processes for Lignocellulosic Biomass. ECN BioSynergy, Food and bio-based research Wageningien.

    Google Scholar 

  • He L, Huang H, Zhang Z, Lei Z (2016) A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr Org Chem 19:437–446

    Article  CAS  Google Scholar 

  • Heredia-Olea H, P’erez-Carrillo E, Serna-Saldívar SO (2012) Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresour Technol 119:216–223

    Article  CAS  Google Scholar 

  • Heredia-Olea E, Pérez-Carrillo E, Montoya-Chiw M, Serna-Saldívar SO (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int: 325905. https://doi.org/10.1155/2015/325905

  • Hideno A, Kawashima A, Endo T, Honda K, Morita M (2013) Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers onthe surface. Bioresour Technol 132:64–70

    Article  CAS  Google Scholar 

  • Hong H, Xue G, Weng L, Guo X (2012) Pretreatment of moso bamboo with dilute phosphoric acid. Bioresources 7(4):4902–4913

    Article  Google Scholar 

  • Hongdan Z, Shaohua X, Shubin W (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396

    Article  CAS  Google Scholar 

  • Hou XD, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109(10):2484–2493

    Article  CAS  Google Scholar 

  • Hou XD, Li N, Zong MH (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures. ACS Sustain Chem Eng 1(5):519–526

    Article  CAS  Google Scholar 

  • Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor & Francis, Washington, DC, pp 179–212

    Google Scholar 

  • Imman S, Laosiripojana N, Champreda V (2018) Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol 184:432–443

    Article  CAS  Google Scholar 

  • Ingle AP, Chandel AK, Antunes FAF, Rai M, da Silva SS (2019) New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels Bioprod Biorefin 13:776–788

    Article  CAS  Google Scholar 

  • Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 2015(6):4497–4559

    Article  CAS  Google Scholar 

  • Iyer V, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57/58:121–132

    Article  CAS  Google Scholar 

  • Jain P, Rana RS, Sahay S (2013) Evaluation of a minimal energy-dependent technique for preparation of Ailanthus excelsa hemicellulose acid hydrolysate fermentable by Schefferomyces stipitis. J Biofuels 3:103–111

    Article  Google Scholar 

  • Ji S, Lee I (2013) Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour Technol 133:45–50

    Article  CAS  Google Scholar 

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199

    Article  CAS  Google Scholar 

  • Kazi FK, Fortman J, Anex R et al (2010) Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol. Tech. Rep. NREL/TP-6A2–46588, NREL

    Google Scholar 

  • Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J Ind Microbiol Biotechnol 39:429–438

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  CAS  Google Scholar 

  • Kim HJ, Lee S, Kim J, Mitchell RJ, Lee JH (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56

    Article  CAS  Google Scholar 

  • Kirk-Othmer (2001) In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 4th edn. Wiley Publishing, New York

    Google Scholar 

  • Kormelink FJM, Voragen AG (1993) Degradation of different [(glucurono)arabin’;]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688695

    Article  Google Scholar 

  • Koutsianitis D, Mitani C, Giagli K, Tsalagkas D, Halász K, Kolonics O et al (2015) Properties of ultrasound extracted bicomponent lignocelluloses thin films. Ultrason Sonochem 23:148–155

    Article  CAS  Google Scholar 

  • Krassig H, Schurz J (2002) Ullmann’s Encyclopedia of industrial chemistry, Sixth edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7

    Article  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962

    Article  CAS  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by Nmethylmorpholine-N-oxide pretreatment. Bioresour Technol 100(2):866–871

    Article  CAS  Google Scholar 

  • Lai YZ (1991) In wood and cellulose chemistry. In: DNS H, Shiraishi N (eds) Chemical degradation, 2nd edn. Marcel Dekker Inc, New York, pp 455–473

    Google Scholar 

  • Lai DM, Deng L, Guo QX, Fu Y (2011) Hydrolysis of biomass by magnetic solid acid. Energy Environ Sci 4:3552. https://doi.org/10.1039/c1ee01526e

    Article  CAS  Google Scholar 

  • Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102(10):5884–5890

    Article  CAS  Google Scholar 

  • Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:94–115

    Google Scholar 

  • Lenihan L, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403

    Article  CAS  Google Scholar 

  • Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349(11–12):1847–1850. https://doi.org/10.1002/adsc.200700259

    Article  CAS  Google Scholar 

  • Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10(2):177–182. https://doi.org/10.1039/B711512A

    Article  CAS  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066

    Article  CAS  Google Scholar 

  • Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13(8):2038–2047. https://doi.org/10.1039/c1gc15522a

    Article  CAS  Google Scholar 

  • Li HQ, Jiang W, Jia JX, Xu J (2014) pH pre-corrected liquid hot water pretreatment on corn stover with high hemicelluloses recovery and low inhibitors formation. Bioresour Technol 153:292–299

    Article  CAS  Google Scholar 

  • Li L, Chen C, Zhang R, He Y, Wang W, Liu G (2015) Pretreatment of corn stover for methane production with the combination of potassium hydroxideand calcium hydroxide. Energy Fuel 29:5841–5846. https://doi.org/10.1021/acs.energyfuels.5b01170

    Article  CAS  Google Scholar 

  • Liebert T (2008) CELL 139-Cellulose solvents: remarkable history and bright future. Abstracts of papers of the American Chemical Society, 235

    Google Scholar 

  • Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chinese Sci Bull 51(20):2432–2436. https://doi.org/10.1007/s11434-006-2134-9

    Article  CAS  Google Scholar 

  • Liu ZS, Wu XL, Kida K, Tang YQ (2012) Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol 119:224–233

    Article  CAS  Google Scholar 

  • Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863

    Article  CAS  Google Scholar 

  • Liyakathali NAM, Muley PD, Aita G, Boldor D (2016) Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresour Technol 200:262–271

    Article  CAS  Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977. https://doi.org/10.1016/j.biortech.2005.01.011

    Article  CAS  Google Scholar 

  • Mancini G, Papirio S, Lens PNL, Esposito G (2016) Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuel 30:1892–1903

    Article  CAS  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609

    Article  Google Scholar 

  • McDonough TJ (1993) The chemistry of organosolv delignification. TAPPI J 76:186–193

    CAS  Google Scholar 

  • McMillan JD (1993) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuel production. American Chemical Society, Washington, DC, pp 292–323

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic Conversion of Biomass for Fuels Production. ACS, Washington, DC, pp 292–324

    Chapter  Google Scholar 

  • Millet MA, Baker AJ, Scatter LD (1976) Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp 6:125–153

    Google Scholar 

  • Mirahmadi K, Mohseni Kabir M, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5:928–938

    CAS  Google Scholar 

  • Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109(6):1430–1442

    Article  CAS  Google Scholar 

  • Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Mtui GYS (2012) Oxalic acid pretreatment, fungal enzymatic saccharification and fermentation of maize residues to ethanol. Afr J Biotechnol 11(4):843–851

    CAS  Google Scholar 

  • Mueller-Hartlev I, Hartlev RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyi and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85

    Article  Google Scholar 

  • Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214

    Article  CAS  Google Scholar 

  • Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    Article  CAS  Google Scholar 

  • Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65

    Article  CAS  Google Scholar 

  • Nguyen TA, Kim KR, Han SJ, Cho HY, Kim JW, Park SM et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438

    Article  CAS  Google Scholar 

  • O’Connor RP, Woodley R, Kolstad JJ, Kean R, Glassner DA, Mastel B, Ritzenthaler JM, John H, Warwick J, Hettenhaus JR, Brooks RK (2007) Process for fractionating ligno cellulosic biomass into liquid and solid products. assignee U. S. A. Nature-works LLC, patent number WO 2007120210

    Google Scholar 

  • O’Donovan A, Gupta VK, Tuohy MG (2013) Recent updates in acid pretreatments and SEM analysis of acid pretreated grass biomass. In: Gupta VK, Tuohi MG (eds) Biofuel technologies: recent development. Springer Science Publishers, Berlin, pp 97–118

    Chapter  Google Scholar 

  • Ouyang X, Zhu G, Huang X, Qiu X (2015) Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J Energy Chem 24:72–76

    Article  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A 321(1561):523–536

    CAS  Google Scholar 

  • Pan X, Arato C, Gilkes N et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and coproducts. Biotechnol Bioeng 90(4):473–481

    Article  CAS  Google Scholar 

  • Pan X, Gilkes N, Kadla J et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861

    Article  CAS  Google Scholar 

  • Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47:31–35

    Article  CAS  Google Scholar 

  • Park N, Kim H-Y, Koo B-W, Yeo H, Choi I-G (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101(18):7046–7053

    Article  CAS  Google Scholar 

  • Patil JH, AntonyRaj M, Gavimath CC (2011) Study on effect of pretreatment methods on biomethanation of water hyacinth. Int J Adv Biotechnol Res 2:143–147

    CAS  Google Scholar 

  • Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174

    Article  Google Scholar 

  • Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid-functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342–352

    Article  CAS  Google Scholar 

  • Pena L, Xu F, Hohn KL, Li J, Wang D (2014) Propyl-sulfonic acid functionalized nanoparticles as catalyst for pretreatment of corn stover. J Biomater Nanobiotechnol 5:8–16

    Article  CAS  Google Scholar 

  • Petkovic M, Hartmann DO, Adamova G, Seddon KR, Rebelo LPN, Pereira CS (2012) Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem 36(1):56–63

    Article  CAS  Google Scholar 

  • Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152

    Article  CAS  Google Scholar 

  • Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136

    Article  CAS  Google Scholar 

  • Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36

    Article  CAS  Google Scholar 

  • Qing Q, Huang M, He Y, Wang L, Zhang Y (2015) Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Appl Biochem Biotechnol 177:1493–1507

    Article  CAS  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  CAS  Google Scholar 

  • Rai M, dos Santos JC, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    Article  CAS  Google Scholar 

  • Rajendran K, Drielak E, Varma VS, Muthusamy S, Kumar G (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver Biorefin 8:471–483

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  CAS  Google Scholar 

  • Redding AP, Wang Z, Keshwani RD, Cheng J (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424

    Article  CAS  Google Scholar 

  • Ren HW, Chen CM, Wang QH, Zhao DS, Guo SH (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. Bioresources 11(2):5435–5451

    CAS  Google Scholar 

  • Rico A, Rencoret J, Río JCD, Martínez A, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7(1):6

    Article  CAS  Google Scholar 

  • Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Edit 47(42):8047–8050. https://doi.org/10.1002/anie.200802879

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-Noxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291

    Article  CAS  Google Scholar 

  • Saha BC, Biswas A, Cotta MA (2008) Microwave pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. J Biobaased Mater Bioenergy 2:210–217. https://doi.org/10.1166/jbmb.2008.412

    Article  Google Scholar 

  • Sahay S, Rana RS (2017) Hemicellulose hydrolysate from Ailanthes excelsa wood potentially fermentable to ethanol. J Trop For Res 29(2):172–178

    Google Scholar 

  • Sahay S, Chauhan D, Chourse V (2019) Pb activated laccase from thermotolerant Aspergillus nidulans TTF6 showing Pb activation for smaller substrates and dyes remediation in all climates. Proc Natl Acad Sci Biol Sci. https://doi.org/10.1007/s40011-019-01092-y

  • Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK (2018) Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour Technol 253:252–255

    Article  CAS  Google Scholar 

  • Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90

    Article  CAS  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  Google Scholar 

  • Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465

    Article  CAS  Google Scholar 

  • Sathitsuksanoh N, Zhu Z, Zhang YHP (2012) Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 19(4):1161–1172

    Article  CAS  Google Scholar 

  • Satimanont S, Luengnaruemitchai A, Wongkasemjit S (2012) Effect of temperature and time on dilute acid pretreatment of corn cobs. Int J Chem Biol Eng 6:333–337

    CAS  Google Scholar 

  • Schell D, Harwood C (1994) Milling of lignocellulosic biomass. Appl Biochem Biotechnol 45–46(1):159–168

    Article  Google Scholar 

  • Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    Article  CAS  Google Scholar 

  • Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak ny N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101:4914–4918

    Article  CAS  Google Scholar 

  • Shahbazi A, Zhang B (2010) Dilute and concentrate acid hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production, Woodhead publishing series in energy. Woodhead Publishing, Boca Raton, pp 143–158

    Chapter  Google Scholar 

  • Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289

    Article  CAS  Google Scholar 

  • Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108(3):511–520

    Article  CAS  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood Chemistry – fundamentals and applications, 2nd edn. Academic Press, New York

    Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082

    Article  CAS  Google Scholar 

  • Stepan AM, Monshizadeh A, Hummel M, Roselli A, Sixta H (2016) Cellulose fractionation with IONCELL-P. Carbohydr Polym 150:99–106

    Article  CAS  Google Scholar 

  • Strong PJ, Calus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3- methylimidazolium acetate. Green Chem 11(5):646–655. https://doi.org/10.1039/b822702

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975. https://doi.org/10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  • Tang J, Chen K, Xu J, Li J, Zhao C (2011) Effects of dilute acid hydrolysis on composition and structure of cellulose in eulaliopsis binata. Bioresources 6(2):1069–1078

    CAS  Google Scholar 

  • Tanjore D, Richard TL (2015) A systems view of lignocellulose hydrolysis. In: Ravindra P (ed) Advances in bioprocess technology. Springer International Publishing AG, Cham, pp 36–50

    Google Scholar 

  • Tao L, Aden A, Elander RT et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114

    Article  CAS  Google Scholar 

  • Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv Chem 95:197–218. https://doi.org/10.1021/ba-1969-0095.ch012

    Article  CAS  Google Scholar 

  • Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F et al (2018) Bioethanol production from lignocellulosic biomass by environment friendly pretreatment methods: a review. Appl Ecol Environ Res 16:225–249

    Article  Google Scholar 

  • Thermowoodhandbook (2003) Helsinki, Finnish Thermowood Association.

    Google Scholar 

  • Tian L, Branford-White C, Wang W, Nie H, Zhu L (2012) Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. Int J Biol Macromol 50:782–787

    Article  CAS  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • Tutt M, Kikas T, Olt J (2012) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosyst Eng 1:269–276

    Google Scholar 

  • Tutt M, Kikas T, Olt J (2012a) Comparison of different pretreatment methods on degradation of Rye straw, Engineering for Rural Development, Jelgava, Latvia

    Google Scholar 

  • Tutt M, Kikas T, Olt J (2012b) Influence of different pretreatment methods on bioethanol production from wheat straw. Agron Res Biosys Eng 1:269–276

    Google Scholar 

  • van Groenestijn JW, Hazewinkel JHO, Bakker RR (2007) Pre-treatment of ligno-cellulose with biological acid recycling (The biosulfurol process). Netherlands Organisation for Applied Scientific Research (TNO), Zeist

    Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin-improvement of in vitro digestibility of poplar saw dust. Biomass 16:1–17

    Article  CAS  Google Scholar 

  • Villaverde JJ, Ligero P, de Vega A (2010) Miscanthus x giganteus as a source of biobased products through organosolv fractionation: a mini review. Open Agric J 4:102–110

    Article  Google Scholar 

  • Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 51:35–42

    Article  CAS  Google Scholar 

  • Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119:26020–26028

    Article  CAS  Google Scholar 

  • Wang Y, Fan L, Shan S, Liu Y, Ruan R (2016) Review of microwave assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113

    Article  CAS  Google Scholar 

  • Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2018) Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018(8):12714–12723

    Article  Google Scholar 

  • Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013) Unmasking the structural features and property of lignin from bamboo. Ind Crop Prod 42:332–343

    Article  CAS  Google Scholar 

  • Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108(12):2865–2875. https://doi.org/10.1002/bit.23266

    Article  CAS  Google Scholar 

  • Xie H, Zhao ZK (2011) Selective breakdown of (ligno)cellulose in ionic liquids. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka, pp 61–80. https://doi.org/10.5772/14681

    Chapter  Google Scholar 

  • Xie H, Liu W, Beadham I, Gathergood N (2012) Biorefinery with ionic liquids. In: Xie H, Gathergood N (eds) The role of green chemistry in biomass processing and conversion. Wiley, Hoboken, pp 75–133. https://doi.org/10.1002/9781118449400.ch3

    Chapter  Google Scholar 

  • Xu J (2015) Microwave pretreatment. In: Pandey A, Negi S, Binod P, Larroch C (eds) Pretreatment of biomass processes and technologies, 1st edn. Elsevier, Waltham, pp 157–172

    Chapter  Google Scholar 

  • Xu J, Zhang X, Cheng JJ (2012) Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Bioresour Technol 111:255–260

    Article  CAS  Google Scholar 

  • Xu P, Zheng GW, Du PX, Zong MH, Lou WY (2016) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4(2):371–386

    Article  CAS  Google Scholar 

  • Xu P, Zheng GW, Zong MH, Li N, Lou WY (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34

    Article  Google Scholar 

  • Yadav P, Mundada G, Biswas B, Srivastava V, Singh R, Krishna BB, Kumar J, Bhaskar T (2016) Microwave assisted pyrolysis of biomass for liquid biofuels production: In Biofuels: production and future prospectives (Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou) Boca Raton: CRC Press pp 164-182

    Google Scholar 

  • Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920

    Article  CAS  Google Scholar 

  • Yang B, Tao L, Wyman CE (2018) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofpr Biofuels Bioprod Biorefin 12(1):125–138

    Article  CAS  Google Scholar 

  • Zamocky M, Gasselhuber B, Furtmüller PG, Obinger C (2014) Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidises. Cell Mol Life Sci 71:4681–4696

    Article  CAS  Google Scholar 

  • Zavarzina AG, Lisov AV, Leontievsky AA (2018) The role of ligninolytic enzymes laccase and a versatile peroxidase of the white-rot fungus Lentinus tigrinus in biotransformation of soil humic matter: comparative in vivo study. J Geophys Res Biogeosci 123:2727–2742

    Article  CAS  Google Scholar 

  • Zdanowick M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380

    Article  CAS  Google Scholar 

  • Zhang ZC (2013) Catalytic transformation of carbohydrates and lignin in ionic liquids. WIREs Energy Environ 2(6):655–672. https://doi.org/10.1002/wene.67

    Article  CAS  Google Scholar 

  • Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517

    Article  CAS  Google Scholar 

  • Zhang YHP, Ding S-Y, Mielenz JR et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  CAS  Google Scholar 

  • Zhang YHP, Zhu Z, Rollin R, Sathitsuksanoh N (2010) Advances in cellulose solvent- and organic solvent-based lignocelluloses fractionation (COSLIF) in cellulose solvents. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, American Chemical Society symposium series, vol 1033. American Chemical Society, Washington, DC, pp 365–379

    Chapter  Google Scholar 

  • Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642

    Article  CAS  Google Scholar 

  • Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014a) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao J, Xu F, Li Y (2014b) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  • Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5

    Article  CAS  Google Scholar 

  • Zhang L, Lu H, Yu J, Wang Z (2017) Dissolution of Lignocelluloses with a high lignin content in a N-Methylmorpholine-N-oxide Monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65(44):9587–9594

    Article  CAS  Google Scholar 

  • Zhao Z, Liu D (2012) Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process. Bioresour Technol 117:25–32

    Article  CAS  Google Scholar 

  • Zhao DB, Liao YC, Zhang ZD (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48

    Article  CAS  Google Scholar 

  • Zhao C, Ding W, Chen F, Cheng C, Shao Q (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40

    Article  CAS  Google Scholar 

  • Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY (2015) Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain Chem Eng 3(11):2746–2755

    Article  CAS  Google Scholar 

  • Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH. Bioresour Technol 100: 5140-5145

    Article  CAS  Google Scholar 

  • Zhou M, Xu J, Jiang J, Sharma BK (2018) A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts. Energies 11(11):2877

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327. https://doi.org/10.1039/b601395c

    Article  CAS  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahay, S. (2020). Impact of Pretreatment Technologies for Biomass to Biofuel Production. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-32-9607-7_7

Download citation

Publish with us

Policies and ethics