Skip to main content

Abstract

Cancer is the second leading cause of mortality worldwide. It is an anomalous condition in which cell growth bypasses all the normal restraints on cell division and displays inappropriate cell proliferation. So, rather than responding normally to the cues that regulate the cell behaviour cancer cells grow in an uncontrolled manner invading neighbouring cells and organs and eventually spread throughout the body. The abnormal proliferation of cells is attributed to the dysregulation of the cell cycle that is one of the most frequent aberrations during tumour development. Unlike the normal cell cycle progression that occurs in an inordinately controlled and tightly regulated fashion, tumour cells involve disruption of this equilibrium and loss of checkpoint control that results in genomic instability, accumulation of DNA damage, uncontrolled cell proliferation and eventually tumorigenesis. Positive regulators are abnormally expressed or activated in cancer, while negative regulators are functionally suppressed. In light of this, comprehension of the molecular mechanisms of the deregulation of the cell cycle in cancer can offer significant understanding of how normal cells develop as well as how new cancer therapy methods are tumorigenic can be created. Cancer develops from aberrant positive regulator expression or activation as well as the effective suppression of adverse regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal ML et al (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci 92(18):8493–8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen PR et al (1996) Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state. Mutat Res 372(2):181–194

    Article  CAS  PubMed  Google Scholar 

  • Atherton-Fessler S et al (1993) Mechanisms of p34cdc2 regulation. Mol Cell Biol 13(3):1675–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5):421–429

    Article  CAS  PubMed  Google Scholar 

  • Bodrug SE et al (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13(9):2124–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F et al (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127(16):3029–3030

    Article  PubMed  Google Scholar 

  • Brugarolas J et al (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377(6549):552–557

    Article  CAS  PubMed  Google Scholar 

  • Busino L et al (2003) Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426(6962):87–91

    Article  CAS  PubMed  Google Scholar 

  • Cahill DP et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    Article  CAS  PubMed  Google Scholar 

  • Chehab NH et al (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev 14(3):278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehab NH et al (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci 96(24):13777–13782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MD et al (1997) Phase I trial of taxol as a radiation sensitizer with cisplatin in advanced cervical cancer. Gynecol Oncol 67(2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Crasta K et al (2006) Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J 25(11):2551–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donehower LA et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    Article  CAS  PubMed  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262

    Article  CAS  PubMed  Google Scholar 

  • Easton J et al (1998) Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res 58(12):2624–2632

    CAS  PubMed  Google Scholar 

  • El-Deiry WS et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  CAS  PubMed  Google Scholar 

  • Fan S et al (1997) Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14(18):2127–2136

    Article  CAS  PubMed  Google Scholar 

  • Fisher R et al (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108(3):479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbsky GJ (1997) Cell cycle checkpoints: arresting progress in mitosis. BioEssays 19(3):193–197

    Article  CAS  PubMed  Google Scholar 

  • Gu Y et al (1993) Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366(6456):707–710

    Article  CAS  PubMed  Google Scholar 

  • Guillot C et al (1997) p21WAF1/CIP1 response to genotoxic agents in wild-type TP53 expressing breast primary tumours. Oncogene 14(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409

    Article  CAS  PubMed  Google Scholar 

  • Harper JW et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    Article  CAS  PubMed  Google Scholar 

  • Hayles J et al (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78(5):813–822

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann I et al (1994) Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J 13(18):4302–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 79(4):573–582

    Article  CAS  PubMed  Google Scholar 

  • Iyer DR, Rhind N (2017) The intra-S checkpoint responses to DNA damage. Genes 8(2):74

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinno S et al (1994) Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J 13(7):1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DG (1995) Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene 11(9):1685–1692

    CAS  PubMed  Google Scholar 

  • Kamb A (1998) Cyclin-dependent kinase inhibitors and human cancer. In: Cyclin dependent kinase (CDK) inhibitors. Springer, New York, pp 139–148

    Chapter  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71(4):587–597

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S et al (2005) Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170(3):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King RW et al (1994) Mitosis in transition. Cell 79(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Koh J et al (1995) Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375(6531):506–510

    Article  CAS  PubMed  Google Scholar 

  • Kops GJPL et al (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785

    Article  CAS  PubMed  Google Scholar 

  • Lapointe J et al (1996) A p18 mutant defective in CDK6 binding in human breast cancer cells. Cancer Res 56(20):4586–4589

    CAS  PubMed  Google Scholar 

  • Leach FS et al (1993) Amplification of cyclin genes in colorectal carcinomas. Cancer Res 53(9):1986–1989

    CAS  PubMed  Google Scholar 

  • Liebmann J et al (1994) In vitro studies of Taxol as a radiation sensitizer in human tumor cells. J Natl Cancer Inst 86(6):441–446

    Article  CAS  PubMed  Google Scholar 

  • Linke SP et al (1996) A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10(8):934–947

    Article  CAS  PubMed  Google Scholar 

  • Lohka MJ et al (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci 85(9):3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovec H et al (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 13(15):3487–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir MA, Aisha S, Sofi S (2022a) Introduction to various types of cancers, chapter-1. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 1–30; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00010-5

    Google Scholar 

  • Mir MA, Aisha S, Sofi S, Rasheid S (2022b) The tumor microenvironment, chapter-2. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 31–58; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00007-5

    Chapter  Google Scholar 

  • Mir MA, Sofi S, Aisha S (2022c) Role of cancer-associated fibroblasts in tumor microenvironment, chapter-3. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 59–86; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00002-6

    Chapter  Google Scholar 

  • Mir MA, Mir AY, Jan U, Dar MA, Zahoor ul Haq Shah M (2022d) Role of cancer-associated fibroblasts in tumor microenvironment, chapter-4. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 87–112; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00004-X

    Chapter  Google Scholar 

  • Mir MA, Mir AY (2022) Role of regulatory T cells in cancer, chapter-5. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 113–136; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00001-4

    Chapter  Google Scholar 

  • Mir MA, Mir AY, Mushtaq T (2022e) Role of tumor-associated macrophages in the breast tumor microenvironment, chapter-6. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 137–170; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00003-8

    Chapter  Google Scholar 

  • Mir MA, Gul A (2022) The extracellular matrix in breast cancer, chapter-8. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 194–220; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00006-3

    Google Scholar 

  • Mira MA, Haq BUL (2022) Targeting tumor microenvironment for breast cancer treatment, chapter-10. In: Role of tumor microenvironment in breast cancer and targeted therapies. Elsevier, San Diego, pp 249–298; ISBN 978-0-443-18696-7. https://doi.org/10.1016/B978-0-443-18696-7.00008-7

    Chapter  Google Scholar 

  • Mailand N et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Mailand N et al (2002) Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21(21):5911–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M et al (2009) Cyclin-dependent kinases: a family portrait. Nat Cell Biol 11(11):1275–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118(4):493–504

    Article  CAS  PubMed  Google Scholar 

  • Martín-Caballero J et al (2001) Tumor susceptibility of p21 Waf1/Cip1-deficient mice. Cancer Res 61(16):6234–6238

    PubMed  Google Scholar 

  • Massagué J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  PubMed  Google Scholar 

  • Matsushime H et al (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71(2):323–334

    Article  CAS  PubMed  Google Scholar 

  • Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehraj U et al (2021) Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87(2):147–158

    Article  PubMed  Google Scholar 

  • Mehraj U et al (2022) Expression pattern and prognostic significance of CDKs in breast cancer: an integrated bioinformatic study. Cancer Biomark 34:505–519

    Article  CAS  PubMed  Google Scholar 

  • Mir MA (2015) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London. https://doi.org/10.1016/C2014-0-02898-5. ISBN: 9780128025857

    Book  Google Scholar 

  • Mir MA, Agrewala JN (2008) Signaling through CD80: an approach for treating lymphomas. Expert Opin Ther Targets 12(8):969–979

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Mehraj U (2019) Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev 15(2):172–184

    Article  CAS  Google Scholar 

  • Mitra J et al (1999) Induction of p21 WAF1/CIP1 and inhibition of Cdk2 mediated by the tumor suppressor p16 INK4a. Mol Cell Biol 19(5):3916–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari M et al (2000) Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep 1(1):71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse L et al (1997) Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18 INK4c and IL-6. Immunity 6(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Motokura T et al (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K (1996) Putting the cell cycle in order. Science 274(5293):1643–1645

    Article  CAS  PubMed  Google Scholar 

  • Nurse P, Bissett Y (1981) Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292(5823):558–560

    Article  CAS  PubMed  Google Scholar 

  • Nyberg KA et al (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617

    Article  CAS  PubMed  Google Scholar 

  • Okamoto A et al (1994) Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci 91(23):11045–11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otterson GA et al (1994) Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9(11):3375–3378

    CAS  PubMed  Google Scholar 

  • Ouelle DE et al (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83(6):993–1000

    Article  Google Scholar 

  • Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246(4930):603–608

    Article  CAS  PubMed  Google Scholar 

  • Peng J et al (1998) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12(5):755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennycook BR, Barr AR (2020) Restriction point regulation at the crossroads between quiescence and cell proliferation. FEBS Lett 594(13):2046–2060

    Article  CAS  Google Scholar 

  • Peters J-M (1998) SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol 10(6):759–768

    Article  CAS  PubMed  Google Scholar 

  • Polyak K et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz J et al (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92(6):713–723

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Bhat BA (2020) U Mehraj U, Mir MA (2020) rising trends of cancers in Kashmir valley: distribution pattern, incidence and causes. J Oncol Res Treat 5(150):2

    Google Scholar 

  • Qayoom H et al (2021) An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 17(31):4185–4206

    Article  CAS  PubMed  Google Scholar 

  • Reynisdóttir I, Massagué J (1997) The subcellular locations of p15 (Ink4b) and p27 (Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 11(4):492–503

    Article  PubMed  Google Scholar 

  • Richardson C, Jasin M (2000) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20(23):9068–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickert P et al (1996) Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12(12):2631–2640

    CAS  PubMed  Google Scholar 

  • Roy R et al (1994) The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79(6):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Rubin SM et al (2020) Integrating old and new paradigms of G1/S control. Mol Cell 80(2):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangfelt O et al (1997) Induction of Cip/Kip and Ink4 cyclin dependent kinase inhibitors by interferon-α in hematopoietic cell lines. Oncogene 14(4):415–423

    Article  CAS  PubMed  Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci 77(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schottenfeld D, Fraumeni JF Jr (2006) Cancer epidemiology and prevention. Oxford University Press, New York

    Book  Google Scholar 

  • Shao Z, Robbins PD (1995) Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene 10(2):221–228

    CAS  PubMed  Google Scholar 

  • Shechter D et al (2004) Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair 3(8–9):901–908

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60(14):3689–3695

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18(22):2699–2711

    Article  CAS  PubMed  Google Scholar 

  • Shieh S-Y et al (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL et al (2020) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  • Sofi S et al (2022) Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 39(6):1–16

    Article  Google Scholar 

  • Sørensen CS, SyljuÃ¥sen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40(2):477–486

    Article  PubMed  Google Scholar 

  • Sørensen CS et al (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3):247–258

    Article  PubMed  Google Scholar 

  • Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Tanaka H et al (2002) Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 158(2):321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Wang TC et al (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671

    Article  CAS  PubMed  Google Scholar 

  • Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241(4863):317–322

    Article  CAS  PubMed  Google Scholar 

  • Wölfel T et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269(5228):1281–1284

    Article  PubMed  Google Scholar 

  • Won K-A et al (1992) Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci 89(20):9910–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods CM et al (1995) Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1(5):506–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Q et al (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 13(7):4242–4250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6):725–734

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Sofi, S. (2023). Cell Cycle and Cancer. In: Mir, M. (eds) Therapeutic potential of Cell Cycle Kinases in Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-8911-7_4

Download citation

Publish with us

Policies and ethics