Skip to main content
Log in

Taxol-Induced Mitotic Block Triggers Rapid Onset of a p53-Independent Apoptotic Pathway

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

At therapeutic concentrations, the antineoplastic agent taxol selectively perturbs mitotic spindle microtubules. Taxol has recently been shown to induce apoptosis, similar to the mechanism of cell death induced by other antineoplastic agents. However, taxol has shown efficacy against drug-refractory cancers, raising the possibility that this pharmacological agent may trigger an alternative apoptotic pathway.

Materials and Methods

The kinetics and IC50 of mitotic (M) block, aberrant mitosis, and cytotoxicity following taxol treatment were analyzed in human cell lines as well as normal mouse embryo fibroblasts (MEFs) and MEFs derived from p53-null mice. Apoptosis was followed by DNA gel electrophoresis and by in situ DNA end-labeling (TUNEL).

Results

Taxol induced two forms of cell cycle arrest: either directly in early M at prophase or, for those cells progressing through aberrant mitosis, arrest in G1 as multimininucleated cells. TUNEL labeling revealed that DNA nicking occurred within 30 min of the arrest in prophase. In contrast, G1-arrested, multimininucleated cells became TUNEL positive only after several days. In the subset of cells that became blocked directly in prophase, both wt p53-expressing and p53-null MEFs responded similarly to taxol, showing rapid onset of DNA nicking and apoptosis. However, p53-null MEFs progressing through aberrant mitosis failed to arrest in the subsequent G1 phase or to become TUNEL positive, and remained viable.

Conclusions

Taxol induces two forms of cell cycle arrest, which in turn induce two independent apoptotic pathways. Arrest in prophase induces rapid onset of a p53-independent pathway, whereas G1-block and the resulting slow (3–5 days) apoptotic pathway are p53 dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schiff PB, Horwitz SB. (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. U.S.A. 77: 1561–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schiff PB, Horwitz SB. (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5-triphosphate or microtubule-associated proteins. Biochemistry 20: 3247–3252.

    Article  CAS  PubMed  Google Scholar 

  3. Manfredi JJ, Horowitz SB. (1984) Taxol: An antimitotic agent with a new mechanisms of action. Pharmacol. Ther. 25: 83–125.

    Article  CAS  PubMed  Google Scholar 

  4. Manfredi JJ, Parness J, Horwitz SB. (1982) Taxol binds to cellular microtubules. J. Cell Biol. 94: 688–696.

    Article  CAS  PubMed  Google Scholar 

  5. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J. (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. U.S.A. 78: 5608–5612.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Brabander M, Geuens G, Nuydens R, Willebrords F, Aerts F, DeMey J. (1986) Microtubule dynamics during the cell cycle: The effects of taxol and nocodazole on the microtubule system of Pt K2 cells at different stages of the mitotic cycle. In: Bourne GH, Danielli JF, Jeon KW, (eds). Int. Review of Cytology. Academic Press, Orlando, pp. 215–274.

    Google Scholar 

  7. Howard WD, Timasheff SN. (1988) Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J. Biol. Chem. 263: 1342–1346.

    PubMed  CAS  Google Scholar 

  8. Rowinsky EK, Donehower RC, Jones RJ, Tucker RW. (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res. 48: 4093–4100.

    PubMed  CAS  Google Scholar 

  9. McGuire WP, Rowinsky EK, Rosenshein NB, et al. (1989) Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med. 111: 273–279.

    Article  CAS  PubMed  Google Scholar 

  10. Rowinsky EK, Cazenave LA, Burke PJ, et al. (1989) Phase I and pharmacodynamic study of taxol in refractory acute leukemias. Cancer Res. 49: 4640–4647.

    PubMed  CAS  Google Scholar 

  11. Adler LM, Herzog TJ, Williams S, Rader JS, Mutch DG. (1994) Analysis of exposure times and dose escalation of paclitaxel in ovarian cancer cell lines. Cancer 74: 1891–1898.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes FA, Walters RS, Theriault RL, et al. (1991) Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J. Natl. Cancer Inst. (U.S.A.) 83: 797–805.

    Article  Google Scholar 

  13. Ettinger DS. (1993) Overview of paclitaxel (Taxol) in advanced lung cancer. Sem. Oncology 20: 46–49.

    CAS  Google Scholar 

  14. Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP. (1987) Phase I trial of taxol given as a 24-hour infusion every 21 days: Responses observed in metastatic melanoma. J. Clin. Oncol. 5: 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  15. Einzig AI, Hochster H, Wiernik PH, et al. (1991) A phase II study of taxol in patients with malignant melanoma. Inv. New Drugs 9: 59–64.

    CAS  Google Scholar 

  16. Forastiere AA. (1993) Use of paclitaxel (Taxol) in squamous cell carcinoma of the head and neck. Sem. Oncology 20: 56–60.

    CAS  Google Scholar 

  17. Dustin P. (1984) Microtubules. 2nd Ed. Springer-Verlag, Berlin.

    Book  Google Scholar 

  18. Jordan MA, Toso RJ, Thrower D, Wilson L. (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U.S.A. 90: 9552–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kung AL, Sherwood SW, Schimke RT. (1990) Cell line-specific differences in control of cell cycle progression in the absence of mitosis. Proc. Natl. Acad. Sci. U.S.A. 87: 9553–9557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kung AL, Zetterberg A, Sherwood AW, Schimke RT. (1990) Cytotoxic effects of cell cycle phase specific agents: a result of cell cycle perturbation. Cancer Res. 50: 7307–7314.

    PubMed  CAS  Google Scholar 

  21. Liebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB. (1993) Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br. J. Cancer 68: 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherwood SW, Sheridan JP, Schimke RT. (1994) Induction of apoptosis by the antitubulin drug colcemid: Relationship of the mitotic checkpoint control on the induction of apoptosis in HeLa S3 cells. Exp. Cell Res. 215: 373–379.

    Article  CAS  PubMed  Google Scholar 

  23. Bailly E, Dorée M, Nurse P, Bornens M. (1989) p34cdc2 located in both nucleus and cytoplasm; Part is centrosomally associated at G2/M and enters vesicles at anaphase. E.M.B.O. J. 8: 3985–3995.

    CAS  Google Scholar 

  24. Brinkley BR. (1985) Microtubule organizing centers. Annu. Rev. Cell Biol. 1: 145–172.

    Article  CAS  PubMed  Google Scholar 

  25. Verde F, Labbé J, Dorée M, Karsenti E. (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343: 223–238.

    Article  Google Scholar 

  26. Fuchs DA, Johnson RK. (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat. Rep. 62: 1219–1224.

    PubMed  CAS  Google Scholar 

  27. Liebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB. (1994) The influence of Cremophor E.L. on the cell cycle effects of paclitaxel (Taxol) in human cell lines. Cancer Chemother. Pharmacol. 33: 331–339.

    Article  CAS  PubMed  Google Scholar 

  28. Lopes NM, Adams EG, Pitts TW, Bhuyan KB. (1993) Cell kill kinetics and cell cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother. Pharmacol. 32: 235–242.

    Article  CAS  PubMed  Google Scholar 

  29. Hruban RH, Yardley JH, Donehower RC, Boitnott JK. (1988) Epithelial necrosis in the gastrointestinal tract associated with polymerized microtubule accumulation and mitotic arrest. Cancer 63: 1944–1950.

    Article  Google Scholar 

  30. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin. Oncol 20: 1–5.

    PubMed  CAS  Google Scholar 

  31. Stearns M, Wang M. (1992) Taxol blocks processes essential for prostate tumor cell growth, invasion and metastases. Cancer Res. 52: 3776–3781.

    PubMed  CAS  Google Scholar 

  32. Kerr JFR, Wyllie AH, Currie AR. (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wyllie AH. (1981) Cell death: A new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA, (eds.). Cell Death in Biology and Pathology. Chapman & Hall, London, pp. 9–34.

    Chapter  Google Scholar 

  34. Wyllie AH. (1994) Death from inside out: an overview. Phil Trans. Royal Soc. London (B) 345: 237–241.

    Article  CAS  Google Scholar 

  35. Sachs L, Lotem J. (1992) Control of programmed cell death in normal and leukemic cells: New implications for therapy. Blood 82: 15–21.

    Google Scholar 

  36. Schwartzman RA, Cidlowski JA. (1993) Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14: 133–151.

    PubMed  CAS  Google Scholar 

  37. Barry MA, Behnke CA, Eastman A. (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol 40: 2353–2362.

    Article  CAS  PubMed  Google Scholar 

  38. Hickman JA, Potten CS, Merritt AJ, Fisher TC. (1994) Apoptosis and cancer chemotherapy. Phil Trans. Royal Soc. London (B) 343: 319–325.

    Article  Google Scholar 

  39. Sen S, D’Incalci M. (1992) Biochemical events and relevance to cancer chemotherapy. Fed. Eur. Biochem. Soc. Lett. 307: 122–127.

    Article  CAS  Google Scholar 

  40. Demarcq C, Bunch RT, Creswell D, Eastman A. (1993) The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Diff. 5: 983–993.

    Google Scholar 

  41. O’Connor PM, Ferris DK, White GA, et al. (1992) Relationships between cdc2 kinase, DNA cross-linking and cell cycle perturbations induced by nitrogen mustard. Cell Growth Diff. 3: 43–52.

    PubMed  Google Scholar 

  42. Lowe SW, Ruley HE, Jacks T, Housman DE. (1993) p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  43. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. (1991) Participation of p53 protein in the cellular response to DNA damage. Cell 74: 957–967.

    Google Scholar 

  44. Nelson WG, Kastan MB. (1994) DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 14: 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. El-Deiry WS, Tokino T, Velculescu VE, et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  46. Gu Y, Turc CW, Morgan DO. (1993) Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707–710.

    Article  CAS  PubMed  Google Scholar 

  47. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. (1993) The p21 Cdk-interacting protein Cip 1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  48. Dulic W, Kaufmann WK, Wilson SJ, et al. (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblast during radiation-induced G1 arrest. Cell 76: 1013–1033.

    Article  CAS  PubMed  Google Scholar 

  49. Fritsche M, Haessler C, Brandner G. (1993) Induction of nuclear accumulation of the tumor suppressor protein p53 by DNA-damaging agents. Oncogene 8: 307–318.

    PubMed  CAS  Google Scholar 

  50. Lu X, Lane DP. (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75: 765–778.

    Article  CAS  PubMed  Google Scholar 

  51. Clarke AR, Purdie CA, Harrison DJ, et al. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.

    Article  CAS  PubMed  Google Scholar 

  52. Lee JM, Bernstein A. (1993) p53 mutations increase resistance to ionizing radiation. Proc. Natl Acad. Sci. U.S.A. 90: 5742–5746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    Article  CAS  PubMed  Google Scholar 

  54. El-Deiry WS, Harper JW, O’Connor PA, et al. (1994) WAF1/Cip1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 53: 1168–1174.

    Google Scholar 

  55. Levine AJ, Momand J, Finlay CA. (1991) The p53 tumour suppressor gene. Nature 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  56. Fearon ER, Vogelstein B. (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  57. Hollstein M, Sidransky D, Vogelstein B, Harris CC. (1991) p53 Mutations in human cancers. Science 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  58. Sidransky D, Mikkelsen T, Schwechheimer KM, Rosenblum L, Cavanee W, Vogelstein B. (1992) Clonal epansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847.

    Article  CAS  PubMed  Google Scholar 

  59. Hartwell L. (1992) Defects in a cell cycle Checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546.

    Article  CAS  PubMed  Google Scholar 

  60. Jenkins JR, Rodge K, Chumskev P, Currie GA. (1986) The cellular oncogene p53 can be activated by mutagenesis. Nature 317: 816–818.

    Article  Google Scholar 

  61. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplication in cells with mutant p53 alleles. Cell 70: 937–948.

    Article  CAS  PubMed  Google Scholar 

  62. Perry ME, Levine AJ. (1994) p53 and mdm-2: Interactions between a tumor suppressor gene and oncogene product. Mt. Sinai J. Med. 61: 291–299.

    PubMed  CAS  Google Scholar 

  63. Zambetti GP, Levine AJ. (1993) A comparison of biological activities of wild type and mutant p53. F.A.S.E.B. J. 7: 855–865.

    CAS  Google Scholar 

  64. Dittmer D, Patti S, Zambetti G, et al. (1993) Gain of function mutations in p53. Nature Genet. 4: 42–46.

    Article  CAS  PubMed  Google Scholar 

  65. Sturzbecker HW, Brain R, Addison C, et al. (1992) A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7: 1513–1523.

    Google Scholar 

  66. Donehower LA, Harvey M, Slagle BL, et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  67. Symonds H, Krall L, Remington L, et al. (1994) p53-Dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711.

    Article  CAS  PubMed  Google Scholar 

  68. Berges RR, Furuya Y, Remington L, English HF, Jacks T, Isaacs JT. (1993) Cell proliferation, DNA repair and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation. Proc. Natl. Acad. Sci. U.S.A. 90: 8910–8914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhalla K, Ibrado AM, Tourkina E, Tang C, Mahoney ME, Huang Y. (1993) Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 7: 563–568.

    PubMed  CAS  Google Scholar 

  70. Willingham MC, Bhalla K. (1994) Transient mitotic phase localization of Bcl-2 oncoprotein in human carcinoma cells and its possible role in prevention of apoptosis. J. Histochem. Cytochem. 42: 441–450.

    Article  CAS  PubMed  Google Scholar 

  71. Donaldson KL, Goolsby G, Kiener PA, Wahl AF. (1994) Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Differen. 5: 1041–1050.

    CAS  Google Scholar 

  72. Gavrieli Y, Sherman Y, Ben-Sasson SA. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  73. Bollag D, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM. (in press) Epothilones: A novel class of microtubule stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325–2333.

  74. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  CAS  PubMed  Google Scholar 

  75. Cross SM, Sanchez CA, Morgan CA, et al. (1995) A p53-dependent mouse spindle checkpoint. Science 267: 1363–1367.

    Article  Google Scholar 

  76. Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S. (1991) Mutations in p53 as potential molecular markers for human breast cancer. Proc. Natl. Acad. Sci. U.S.A. 88: 10657–10661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sheikh MS, Li X, Chen J, Shao Z, Ordonez JV, Fontana JA. (1994) Mechanisms of regulation of WAF1/Cip1 gene expression in human breast carcinoma: Role of p53-dependent and independent signal transduction pathways. Oncogene 9: 3407–3415.

    PubMed  CAS  Google Scholar 

  78. Shi L, Nishioka WK, Th’ng J, Bradbury EM, Lichfiel DW, Greenberg AH. (1994) Premature p34cdc2 activation required for apoptosis. Science (Wash. D.C.), 263: 1143–1145.

    Article  CAS  Google Scholar 

  79. Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV. (1994) Participation of cyclin A in Myc-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A. 91: 6875–6879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R. (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Proc. Natl. Acad. Sci. U.S.A. 91: 3754–3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Russell P, Nurse P. (1987) Negative Regulation of Mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49: 559–567.

    Article  CAS  PubMed  Google Scholar 

  82. Heald R, McLoughlin M, McKeon F. (1993) Human Wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74: 463–474.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the assistance of Judy Miller in carrying out FACS analysis and also thank J. Xu for helpful discussions on the TUNEL method and Dr. Helen Ranney for valuable input during the completion of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, C.M., Zhu, J., McQueney, P.A. et al. Taxol-Induced Mitotic Block Triggers Rapid Onset of a p53-Independent Apoptotic Pathway. Mol Med 1, 506–526 (1995). https://doi.org/10.1007/BF03401588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401588

Navigation