Skip to main content

Ovarian Aging Etiology and Risk Factors

  • Chapter
  • First Online:
Ovarian Aging

Abstract

Ovarian aging is a complex process influenced by multiple factors, such as age, genetics, neuroendocrine, social psychology, environment, and behavior. Understanding the risk factors of ovarian aging is essential for delaying or preventing ovarian aging, which can improve a woman’s quality of life and happiness and considerably reduce the medical burden. This chapter expounds on the influence of these critical factors on ovarian function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu J, et al. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang S, et al. The Role of Antioxidant Enzymes in the Ovaries. Oxid Med Cell Longev. 2017;2017:4371714.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tatone C, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  4. Yamada-Fukunaga T, et al. Age-associated telomere shortening in mouse oocytes. Reprod Biol Endocrinol. 2013;11:108.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kinugawa C, et al. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J Exp Med. 2000;190(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  6. Torgerson DJ, Thomas RE, Reid DM. Mothers and daughters menopausal ages: is there a link? Eur J Obstet Gynecol Reprod Biol. 1997;74(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  7. Abdelmohsen K, et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell. 2013;12(5):890–900.

    Article  CAS  PubMed  Google Scholar 

  8. Perry JR, et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum Mol Genet. 2014;23(9):2490–7.

    Article  CAS  PubMed  Google Scholar 

  9. Simpson JL. Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann N Y Acad Sci. 2008;1135:146–54.

    Article  PubMed  Google Scholar 

  10. Jiao X, et al. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum Reprod. 2012;27(7):2201–7.

    Article  CAS  PubMed  Google Scholar 

  11. Baronchelli S, et al. Cytogenetics of premature ovarian failure: an investigation on 269 affected women. J Biomed Biotechnol. 2011;2011:370195.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Toniolo D, Rizzolio F. X chromosome and ovarian failure. Semin Reprod Med. 2007;25(4):264–71.

    Article  CAS  PubMed  Google Scholar 

  13. Toniolo D. X-linked premature ovarian failure: a complex disease. Curr Opin Genet Dev. 2006;16(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  14. Therman E, Susman B. The similarity of phenotypic effects caused by Xp and Xq deletions in the human female: a hypothesis. Hum Genet. 1990;85(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  15. Qin Y, et al. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimura-Tadaki A, et al. Breakpoint determination of X;autosome balanced translocations in four patients with premature ovarian failure. J Hum Genet. 2011;56(2):156–60.

    Article  CAS  PubMed  Google Scholar 

  17. Kline J, et al. X-chromosome inactivation and ovarian age during the reproductive years. Fertil Steril. 2006;85(5):1488–95.

    Article  PubMed  Google Scholar 

  18. Kalmbach KH, et al. Telomeres and Female Reproductive Aging. Semin Reprod Med. 2015;33(6):389–95.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, et al. Telomerase activity is more significant for predicting the outcome of IVF treatment than telomere length in granulosa cells. Reproduction. 2014;147(5):649–57.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuiko O, et al. Copy number variation analysis detects novel candidate genes involved in follicular growth and oocyte maturation in a cohort of premature ovarian failure cases. Hum Reprod. 2016;31(8):1913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allingham-Hawkins DJ, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study--preliminary data. Am J Med Genet. 1999;83(4):322–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen EG, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142–52.

    Article  CAS  PubMed  Google Scholar 

  23. Rohr J, et al. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum Reprod. 2008;23(5):1220–5.

    Article  CAS  PubMed  Google Scholar 

  24. McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  25. Spencer CC, et al. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95–108.

    Article  CAS  PubMed  Google Scholar 

  27. Murray A, et al. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. Hum Mol Genet. 2011;20(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  28. Qin CR, et al. Haplotype and mutation analysis of the TGFBR3 gene in Chinese women with idiopathic premature ovarian failure. Gynecol Endocrinol. 2012;28(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  29. Dixit H, et al. Mutational analysis of the betaglycan gene-coding region in susceptibility for ovarian failure. Hum Reprod. 2006;21(8):2041–6.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H, et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dixit H, et al. Expansion of the germline analysis for the INHA gene in Indian women with ovarian failure. Hum Reprod. 2006;21(6):1643–4.

    Article  CAS  PubMed  Google Scholar 

  32. Harris SE, et al. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8(8):729–33.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, et al. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007;88(5):1474–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Inagaki K, Shimasaki S. Impaired production of BMP-15 and GDF-9 mature proteins derived from proproteins WITH mutations in the proregion. Mol Cell Endocrinol. 2010;328(1-2):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dixit H, et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12(6):749–54.

    Article  PubMed  Google Scholar 

  36. Ma L, et al. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 2015;12(2):2529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, et al. New candidate gene POU5F1 associated with premature ovarian failure in Chinese patients. Reprod Biomed Online. 2011;22(3):312–6.

    Article  PubMed  Google Scholar 

  38. Mandon-Pepin B, et al. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol. 2008;158(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, et al. Analysis of FOXO3 mutation in 114 Chinese women with premature ovarian failure. Reprod Biomed Online. 2010;20(4):499–503.

    Article  PubMed  Google Scholar 

  40. Gallardo TD, et al. Sequence variation at the human FOXO3 locus: a study of premature ovarian failure and primary amenorrhea. Hum Reprod. 2008;23(1):216–21.

    Article  CAS  PubMed  Google Scholar 

  41. Vinci G, et al. FOXO3a variants in patients with premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(3):495–7.

    Article  CAS  PubMed  Google Scholar 

  42. Watkins WJ, et al. Mutational screening of FOXO3A and FOXO1A in women with premature ovarian failure. Fertil Steril. 2006;86(5):1518–21.

    Article  CAS  PubMed  Google Scholar 

  43. Fonseca DJ, et al. CITED2 mutations potentially cause idiopathic premature ovarian failure. Transl Res. 2012;160(5):384–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bouilly J, et al. New NOBOX mutations identified in a large cohort of women with primary ovarian insufficiency decrease KIT-L expression. J Clin Endocrinol Metab. 2015;100(3):994–1001.

    Article  CAS  PubMed  Google Scholar 

  45. Bouilly J, et al. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Hum Mutat. 2011;32(10):1108–13.

    Article  CAS  PubMed  Google Scholar 

  46. Qin Y, et al. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voican A, et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(5):E1017–21.

    Article  PubMed  Google Scholar 

  48. Philibert P, et al. NR5A1 (SF-1) gene variants in a group of 26 young women with XX primary ovarian insufficiency. Fertil Steril. 2013;99(2):484–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jiao X, et al. Novel NR5A1 missense mutation in premature ovarian failure: detection in han chinese indicates causation in different ethnic groups. PLoS One. 2013;8(9):e74759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janse F, et al. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI). Fertil Steril. 2012;97(1):141–6 e2.

    Article  CAS  PubMed  Google Scholar 

  51. Lourenco D, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao S, et al. Transcription factor SOHLH1 potentially associated with primary ovarian insufficiency. Fertil Steril. 2015;103(2):548–53 e5.

    Article  CAS  PubMed  Google Scholar 

  53. Ojeda D, et al. Sequence analysis of the CDKN1B gene in patients with premature ovarian failure reveals a novel mutation potentially related to the phenotype. Fertil Steril. 2011;95(8):2658–60 e1.

    Article  CAS  PubMed  Google Scholar 

  54. Qin Y, et al. Novel variants in the SOHLH2 gene are implicated in human premature ovarian failure. Fertil Steril. 2014;101(4):1104–1109 e6.

    Article  CAS  PubMed  Google Scholar 

  55. Tong ZB, et al. Five mutations of mitochondrial DNA polymerase-gamma (POLG) are not a prevalent etiology for spontaneous 46. XX primary ovarian insufficiency. Fertil Steril. 2010;94(7):2932–4.

    Article  CAS  PubMed  Google Scholar 

  56. Laissue P, et al. Mutations in the NOG gene are not a common cause of nonsyndromic premature ovarian failure. Clin Endocrinol (Oxf). 2007;66(6):900.

    Article  PubMed  Google Scholar 

  57. Wu X, et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis. 2013;4:e825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang B, et al. Mutational analysis of SAL-Like 4 (SALL4) in Han Chinese women with premature ovarian failure. Mol Hum Reprod. 2009;15(9):557–62.

    Article  PubMed  Google Scholar 

  59. Tiotiu D, et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7.

    Article  CAS  PubMed  Google Scholar 

  60. Wang B, et al. Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure. Clin Endocrinol (Oxf). 2010;72(1):135–6.

    Article  CAS  PubMed  Google Scholar 

  61. Rossetti R, et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009;30(5):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Laissue P, et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–44.

    Article  CAS  PubMed  Google Scholar 

  63. Dixit H, et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet. 2006;119(4):408–15.

    Article  CAS  PubMed  Google Scholar 

  64. Di Pasquale E, et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91(5):1976–9.

    Article  PubMed  Google Scholar 

  65. Kumar R, et al. BMP15 and GDF9 Gene Mutations in Premature Ovarian Failure. J Reprod Infertil. 2017;18(1):185–9.

    PubMed  PubMed Central  Google Scholar 

  66. Panda B, et al. Germline study of AR gene of Indian women with ovarian failure. Gynecol Endocrinol. 2011;27(8):572–8.

    Article  CAS  PubMed  Google Scholar 

  67. Bione S, et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod. 2004;19(12):2759–66.

    Article  CAS  PubMed  Google Scholar 

  68. Mansouri MR, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang JL, et al. Analysis of progesterone receptor membrane component 1 mutation in Han Chinese women with premature ovarian failure. Reprod Biomed Online. 2014;29(5):640–3.

    Article  CAS  PubMed  Google Scholar 

  70. Wise PM, et al. Neuroendocrine modulation and repercussions of female reproductive aging. Recent Prog Horm Res. 2002;57:235–56.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, et al. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience. 1996;70(4):951.

    Article  CAS  PubMed  Google Scholar 

  72. Everett JW, Sawyer CH. A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology. 1950;47(3):198–218.

    Article  CAS  PubMed  Google Scholar 

  73. Gray GD, et al. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology. 1978;25(3):174–91.

    Article  CAS  PubMed  Google Scholar 

  74. Ma YJ, Kelly MJ, Rönnekleiv OK. Pro-gonadotropin-releasing hormone (ProGnRH) and GnRH content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology. 1990;127(6):2654–64.

    Article  CAS  PubMed  Google Scholar 

  75. Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc R Soc Lond B Biol Sci. 1977;198(1132):279–96.

    Article  CAS  PubMed  Google Scholar 

  76. Gillette MU, Reppert SM. The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull. 1987;19(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  77. Smith MJ, Jiennes L, Wise PM. Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology. 2000;141(11):4317–20.

    Article  CAS  PubMed  Google Scholar 

  78. van der Beek EM, et al. Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotrophin-releasing hormone neurons in the female rat. J Neuroendocrinol. 1993;5(2):137–44.

    Article  PubMed  Google Scholar 

  79. Sun L, et al. FSH directly regulates bone mass. Cell. 2006;125(2):247–60.

    Article  CAS  PubMed  Google Scholar 

  80. Iqbal J, et al. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc Natl Acad Sci U S A. 2006;103(40):14925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. García-Martín A, et al. Role of serum FSH measurement on bone resorption in postmenopausal women. Endocrine. 2012;41(2):302–8.

    Article  PubMed  Google Scholar 

  82. Stilley JA, et al. Signaling through FSH receptors on human umbilical vein endothelial cells promotes angiogenesis. J Clin Endocrinol Metab. 2014;99(5):E813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boudarene M, Legros JJ, Timsit-Berthier M. Study of the stress response: role of anxiety, cortisol and DHEAs. Encephale. 2002;28(2):139–46.

    CAS  PubMed  Google Scholar 

  84. Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1-3):235–72.

    Article  CAS  PubMed  Google Scholar 

  85. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40.

    Article  CAS  PubMed  Google Scholar 

  86. Berga SL, et al. Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertil Steril. 2003;80(4):976–81.

    Article  PubMed  Google Scholar 

  87. Pal L, Bevilacqua K, Santoro NF. Chronic psychosocial stressors are detrimental to ovarian reserve: a study of infertile women. J Psychosom Obstet Gynaecol. 2010;31(3):130–9.

    Article  PubMed  Google Scholar 

  88. Mishra G, Hardy R, Kuh D. Are the effects of risk factors for timing of menopause modified by age? Results from a British birth cohort study. Menopause. 2007;14(4):717–24.

    Article  PubMed  Google Scholar 

  89. Li XF, Knox AM, O’Byrne KT. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res. 2010;1364:153–63.

    Article  CAS  PubMed  Google Scholar 

  90. Nanda AS, Dobson H, Ward WR. Relationship between an increase in plasma cortisol during transport-induced stress and failure of oestradiol to induce a luteinising hormone surge in dairy cows. Res Vet Sci. 1990;49(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  91. Flament-Durand J, Couck AM. Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol. 1979;46(1-2):159–62.

    Article  CAS  PubMed  Google Scholar 

  92. Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science. 1984;224(4648):452–9.

    Article  CAS  PubMed  Google Scholar 

  93. Calogero AE, et al. Glucocorticoids inhibit gonadotropin-releasing hormone by acting directly at the hypothalamic level. J Endocrinol Invest. 1999;22(9):666–70.

    Article  CAS  PubMed  Google Scholar 

  94. Oakley AE, et al. Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: influence of ovarian steroids. Endocrinology. 2009;150(1):341–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ferris RA, McCue PM. The effects of dexamethasone and prednisolone on pituitary and ovarian function in the mare. Equine Vet J. 2010;42(5):438–43.

    Article  CAS  PubMed  Google Scholar 

  96. Sasson R, Amsterdam A. Stimulation of apoptosis in human granulosa cells from in vitro fertilization patients and its prevention by dexamethasone: involvement of cell contact and bcl-2 expression. J Clin Endocrinol Metab. 2002;87(7):3441–51.

    Article  CAS  PubMed  Google Scholar 

  97. Gao HB, et al. Glucocorticoid induces apoptosis in rat leydig cells. Endocrinology. 2002;143(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  98. Hardy R, Kuh D. Social and environmental conditions across the life course and age at menopause in a British birth cohort study. BJOG. 2005;112(3):346–54.

    Article  PubMed  Google Scholar 

  99. Brett KM, Cooper GS. Associations with menopause and menopausal transition in a nationally representative US sample. Maturitas. 2003;45(2):89–97.

    Article  PubMed  Google Scholar 

  100. Richardson MC, et al. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20(3):353–69.

    Article  CAS  PubMed  Google Scholar 

  101. Cooper GS, et al. Follicle-stimulating hormone concentrations in relation to active and passive smoking. Obstet Gynecol. 1995;85(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  102. Vabre P, et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sharara FI, Seifer DB, Flaws JA. Environmental toxicants and female reproduction. Fertil Steril. 1998;70(4):613–22.

    Article  CAS  PubMed  Google Scholar 

  104. Diamanti-Kandarakis E, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gore AC, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36(6):E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Krewski D, Rainham D. Ambient air pollution and population health: overview. J Toxicol Environ Health A. 2007;70(3-4):275–83.

    Article  CAS  PubMed  Google Scholar 

  107. Schlesinger RB, et al. The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhal Toxicol. 2006;18(2):95–125.

    Article  CAS  PubMed  Google Scholar 

  108. Carre J, et al. Does air pollution play a role in infertility?: a systematic review. Environ Health. 2017;16(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Checa Vizcaino MA, Gonzalez-Comadran M, Jacquemin B. Outdoor air pollution and human infertility: a systematic review. Fertil Steril. 2016;106(4):897–904 e1.

    Article  CAS  PubMed  Google Scholar 

  110. Balsa AI, Caffera M, Bloomfield J. Exposures to Particulate Matter from the Eruptions of the Puyehue Volcano and Birth Outcomes in Montevideo. Uruguay. Environ Health Perspect. 2016;124(11):1816–22.

    Article  PubMed  Google Scholar 

  111. Qian Z, et al. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan. China. Int J Hyg Environ Health. 2016;219(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  112. Li X, et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ Pollut. 2017;227:596–605.

    Article  CAS  PubMed  Google Scholar 

  113. Lafuente R, et al. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106(4):880–96.

    Article  CAS  PubMed  Google Scholar 

  114. Veleminsky M Jr, Hanzl M, Sram RJ. The impact of air pollution in the Southern Bohemia Region on fetuses and newborns. Neuro Endocrinol Lett. 2016;37(suppl 2):52–7.

    CAS  PubMed  Google Scholar 

  115. Woodruff TJ, Darrow LA, Parker JD. Air pollution and postneonatal infant mortality in the United States, 1999-2002. Environ Health Perspect. 2008;116(1):110–5.

    Article  PubMed  Google Scholar 

  116. Wu L, et al. Association between ambient particulate matter exposure and semen quality in Wuhan. China. Environ Int. 2017;98:219–28.

    Article  CAS  PubMed  Google Scholar 

  117. Abareshi F, et al. Association of exposure to air pollution and green space with ovarian reserve hormones levels. Environ Res. 2020;184:109342.

    Article  CAS  PubMed  Google Scholar 

  118. Gaskins AJ, et al. Exposure to Fine Particulate Matter and Ovarian Reserve Among Women from a Fertility Clinic. Epidemiology. 2019;30(4):486–91.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Giorgis-Allemand L, et al. Can atmospheric pollutants influence menstrual cycle function? Environ Pollut. 2020;257:113605.

    Article  CAS  PubMed  Google Scholar 

  120. Xue T, Zhang Q. Associating ambient exposure to fine particles and human fertility rates in China. Environ Pollut. 2018;235:497–504.

    Article  CAS  PubMed  Google Scholar 

  121. Gai HF, et al. Ovarian Damages Produced by Aerosolized Fine Particulate Matter (PM2.5) Pollution in Mice: Possible Protective Medications and Mechanisms. Chin Med J (Engl). 2017;130(12):1400–10.

    Article  CAS  PubMed  Google Scholar 

  122. Liao BQ, et al. Effects of fine particulate matter (PM2.5) on ovarian function and embryo quality in mice. Environ Int. 2020;135:105338.

    Article  CAS  PubMed  Google Scholar 

  123. Zhou S, et al. Ovarian Dysfunction Induced by Chronic Whole-Body PM2.5 Exposure. Small. 2020;16(33):e2000845.

    Article  PubMed  Google Scholar 

  124. Endocrinology, The Lancet Diabetes. EDCs: regulation still lagging behind evidence. Lancet Diabetes Endocrinol. 2019;7(5):325.

    Article  Google Scholar 

  125. Gore AC. Endocrine-Disrupting Chemicals. JAMA Intern Med. 2016;176(11):1705–6.

    Article  PubMed  Google Scholar 

  126. Zenzes MT, et al. Cadmium accumulation in follicular fluid of women in in vitro fertilization-embryo transfer is higher in smokers. Fertil Steril. 1995;64(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  127. Neal MS, Zhu J, Foster WG. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod Toxicol. 2008;25(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  128. Machado Jde B, et al. Cotinine and polycyclic aromatic hydrocarbons levels in the amniotic fluid and fetal cord at birth and in the urine from pregnant smokers. PLoS One. 2014;9(12):e116293.

    Article  PubMed  Google Scholar 

  129. Kummer V, et al. Ovarian disorders in immature rats after postnatal exposure to environmental polycyclic aromatic hydrocarbons. J Appl Toxicol. 2013;33(2):90–9.

    Article  PubMed  Google Scholar 

  130. Bloom MS, et al. Persistent organic pollutants (POPs) in human follicular fluid and in vitro fertilization outcomes, a pilot study. Reprod Toxicol. 2017;67:165–73.

    Article  CAS  PubMed  Google Scholar 

  131. Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction. 2011;142(5):633–46.

    Article  CAS  PubMed  Google Scholar 

  132. Petro EM, et al. Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence. Hum Reprod. 2012;27(4):1025–33.

    Article  CAS  PubMed  Google Scholar 

  133. Jirsova S, et al. Effect of polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2,-bis (4-chlorophenyl)-ethane (DDT) in follicular fluid on the results of in vitro fertilization-embryo transfer (IVF-ET) programs. Fertil Steril. 2010;93(6):1831–6.

    Article  CAS  PubMed  Google Scholar 

  134. Liu S, et al. Effects of Aroclor 1254 on in vivo oocyte maturation in the mouse. PLoS One. 2014;9(7):e102064.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pocar P, et al. Effects of polychlorinated biphenyls in CD-1 mice: reproductive toxicity and intergenerational transmission. Toxicol Sci. 2012;126(1):213–26.

    Article  CAS  PubMed  Google Scholar 

  136. Windham GC, et al. Exposure to organochlorine compounds and effects on ovarian function. Epidemiology. 2005;16(2):182–90.

    Article  PubMed  Google Scholar 

  137. Cooper GS, et al. Organochlorine exposure and age at natural menopause. Epidemiology. 2002;13(6):729–33.

    Article  PubMed  Google Scholar 

  138. Hombach-Klonisch S, et al. Molecular actions of polyhalogenated arylhydrocarbons (PAHs) in female reproduction. Curr Med Chem. 2005;12(5):599–616.

    CAS  PubMed  Google Scholar 

  139. Shi Z, et al. Ovarian endocrine disruption underlies premature reproductive senescence following environmentally relevant chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Reprod. 2007;76(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  140. Nilsson E, et al. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7(5):e36129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D’Antuono A, et al. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode. J Agric Food Chem. 2001;49(3):1098–101.

    Article  PubMed  Google Scholar 

  142. Sun Y, et al. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr. 2004;18(8):501–7.

    Article  CAS  PubMed  Google Scholar 

  143. Ikezuki Y, et al. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–41.

    Article  CAS  PubMed  Google Scholar 

  144. Schonfelder G, et al. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–7.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Souter I, et al. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol. 2013;42:224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhu X, et al. Effects of bisphenol A on ovarian follicular development and female germline stem cells. Arch Toxicol. 2018;92(4):1581–91.

    Article  CAS  PubMed  Google Scholar 

  147. Berger A, et al. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod Toxicol. 2016;60:39–52.

    Article  CAS  PubMed  Google Scholar 

  148. Benjamin S, et al. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;340:360–83.

    Article  CAS  PubMed  Google Scholar 

  149. Du YY, et al. Urinary phthalate metabolites in relation to serum anti-Mullerian hormone and inhibin B levels among women from a fertility center: a retrospective analysis. Reprod Health. 2018;15(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Messerlian C, et al. Urinary phthalate metabolites and ovarian reserve among women seeking infertility care. Hum Reprod. 2016;31(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang XF, et al. Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ Mol Mutagen. 2013;54(5):354–61.

    Article  CAS  PubMed  Google Scholar 

  152. Hannon PR, Niermann S, Flaws JA. Acute Exposure to Di(2-Ethylhexyl) Phthalate in Adulthood Causes Adverse Reproductive Outcomes Later in Life and Accelerates Reproductive Aging in Female Mice. Toxicol Sci. 2016;150(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  153. Li L, et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep. 2014;41(3):1227–35.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang XF, et al. Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure. Reprod Fertil Dev. 2015;27(8):1213–21.

    Article  CAS  PubMed  Google Scholar 

  155. Golden R, Gandy J, Vollmer G. A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol. 2005;35(5):435–58.

    Article  CAS  PubMed  Google Scholar 

  156. Smith KW, et al. Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect. 2013;121(11-12):1299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nishihama Y, et al. Association between paraben exposure and menstrual cycle in female university students in Japan. Reprod Toxicol. 2016;63:107–13.

    Article  CAS  PubMed  Google Scholar 

  158. Aker AM, et al. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environ Res. 2016;151:30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Boberg J, et al. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben. Toxicol Sci. 2016;152(1):244–56.

    Article  CAS  PubMed  Google Scholar 

  160. Ahn HJ, et al. Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats. Mol Reprod Dev. 2012;79(9):626–36.

    Article  PubMed  Google Scholar 

  161. Vo TT, et al. Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod Toxicol. 2010;29(3):306–16.

    Article  CAS  PubMed  Google Scholar 

  162. Jian JM, et al. Global distribution of perfluorochemicals (PFCs) in potential human exposure source-A review. Environ Int. 2017;108:51–62.

    Article  CAS  PubMed  Google Scholar 

  163. Olsen GW, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115(9):1298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Heffernan AL, et al. Perfluorinated alkyl acids in the serum and follicular fluid of UK women with and without polycystic ovarian syndrome undergoing fertility treatment and associations with hormonal and metabolic parameters. Int J Hyg Environ Health. 2018;221(7):1068–75.

    Article  CAS  PubMed  Google Scholar 

  165. McCoy JA, et al. Associations between perfluorinated alkyl acids in blood and ovarian follicular fluid and ovarian function in women undergoing assisted reproductive treatment. Sci Total Environ. 2017;605-606:9–17.

    Article  CAS  PubMed  Google Scholar 

  166. Chen Y, et al. Maternal exposure to perfluorooctanoic acid inhibits luteal function via oxidative stress and apoptosis in pregnant mice. Reprod Toxicol. 2017;69:159–66.

    Article  CAS  PubMed  Google Scholar 

  167. Mayer LP, et al. The follicle-deplete mouse ovary produces androgen. Biol Reprod. 2004;71(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  168. Appt SE, et al. Destruction of primordial ovarian follicles in adult cynomolgus macaques after exposure to 4-vinylcyclohexene diepoxide: a nonhuman primate model of the menopausal transition. Fertil Steril. 2006;86(4 Suppl):1210–6.

    Article  CAS  PubMed  Google Scholar 

  169. Minguez-Alarcon L, et al. Urinary triclosan concentrations and diminished ovarian reserve among women undergoing treatment in a fertility clinic. Fertil Steril. 2017;108(2):312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rattan S, et al. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Occupational disease among operating room personnel: a national study. Report of an Ad Hoc committee on the effect of trace anesthetics on the health of operating room personnel, American Society of Anesthesiologists, Anesthesiology, 1974. 41(4): p. 321-340.

    Google Scholar 

  172. Nagella AB, Ravishankar M, Hemanth Kumar VR. Anaesthesia practice and reproductive outcomes: Facts unveiled. Indian J Anaesth. 2015;59(11):706–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Doyle P, et al. Fetal death and congenital malformation in babies born to nuclear industry employees: report from the nuclear industry family study. Lancet. 2000;356(9238):1293–9.

    Article  CAS  PubMed  Google Scholar 

  174. Sun L, et al. Meta-analysis suggests that smoking is associated with an increased risk of early natural menopause. Menopause. 2012;19(2):126–32.

    Article  PubMed  Google Scholar 

  175. Harlow BL, Signorello LB. Factors associated with early menopause. Maturitas. 2000;35(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  176. Fleming LE, et al. Earlier age at menopause, work, and tobacco smoke exposure. Menopause. 2008;15(6):1103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yasui T, et al. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas. 2012;72(3):249–55.

    Article  PubMed  Google Scholar 

  178. Chang SH, et al. Premenopausal factors influencing premature ovarian failure and early menopause. Maturitas. 2007;58(1):19–30.

    Article  PubMed  Google Scholar 

  179. Strohsnitter WC, et al. The association between in utero cigarette smoke exposure and age at menopause. Am J Epidemiol. 2008;167(6):727–33.

    Article  PubMed  Google Scholar 

  180. Steiner AZ, et al. Association of intrauterine and early-life exposures with age at menopause in the Sister Study. Am J Epidemiol. 2010;172(2):140–8.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Westhoff C, Murphy P, Heller D. Predictors of ovarian follicle number. Fertil Steril. 2000;74(4):624–8.

    Article  CAS  PubMed  Google Scholar 

  182. Caserta D, et al. The influence of cigarette smoking on a population of infertile men and women. Arch Gynecol Obstet. 2013;287(4):813–8.

    Article  PubMed  Google Scholar 

  183. Gannon AM, Stampfli MR, Foster WG. Cigarette smoke exposure leads to follicle loss via an alternative ovarian cell death pathway in a mouse model. Toxicol Sci. 2012;125(1):274–84.

    Article  CAS  PubMed  Google Scholar 

  184. Jurisicova A, et al. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J Clin Invest. 2007;117(12):3971–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Camlin NJ, et al. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model. Biol Reprod. 2016;94(2):39.

    Article  PubMed  Google Scholar 

  186. Freour T, et al. Active smoking compromises IVF outcome and affects ovarian reserve. Reprod Biomed Online. 2008;16(1):96–102.

    Article  PubMed  Google Scholar 

  187. Fraser A, et al. Prenatal exposures and anti-Mullerian hormone in female adolescents: the Avon Longitudinal Study of Parents and Children. Am J Epidemiol. 2013;178(9):1414–23.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Cooper GS, Baird DD, Darden FR. Measures of menopausal status in relation to demographic, reproductive, and behavioral characteristics in a population-based study of women aged 35-49 years. Am J Epidemiol. 2001;153(12):1159–65.

    Article  CAS  PubMed  Google Scholar 

  189. Sharara FI, et al. Cigarette smoking accelerates the development of diminished ovarian reserve as evidenced by the clomiphene citrate challenge test. Fertil Steril. 1994;62(2):257–62.

    Article  CAS  PubMed  Google Scholar 

  190. Ho SM, et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104.

    Article  CAS  PubMed  Google Scholar 

  191. Matikainen T, et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 2001;28(4):355–60.

    Article  CAS  PubMed  Google Scholar 

  192. Anderson RA, et al. Activation of the aryl hydrocarbon receptor by a component of cigarette smoke reduces germ cell proliferation in the human fetal ovary. Mol Hum Reprod. 2014;20(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  193. Gavaler JS. Effects of moderate consumption of alcoholic beverages on endocrine function in postmenopausal women. Bases for hypotheses. Recent Dev Alcohol. 1988;6:229–51.

    Article  CAS  PubMed  Google Scholar 

  194. Wood AM, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet. 2018;391(10129):1513–23.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sammel MD, et al. Factors that influence entry into stages of the menopausal transition. Menopause. 2009;16(6):1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Morris DH, et al. Body mass index, exercise, and other lifestyle factors in relation to age at natural menopause: analyses from the breakthrough generations study. Am J Epidemiol. 2012;175(10):998–1005.

    Article  PubMed  Google Scholar 

  197. Kline J, Tang A, Levin B. Smoking, alcohol and caffeine in relation to two hormonal indicators of ovarian age during the reproductive years. Maturitas. 2016;92:115–22.

    Article  CAS  PubMed  Google Scholar 

  198. Taneri PE, et al. Association of alcohol consumption with the onset of natural menopause: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(4):516–28.

    Article  PubMed  Google Scholar 

  199. Grive KJ, Freiman RN. The developmental origins of the mammalian ovarian reserve. Development. 2015;142(15):2554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Peddicord RG. A computational model of cerebellar cortex and peripheral muscle. Int J Biomed Comput. 1977;8(3):217–37.

    Article  CAS  PubMed  Google Scholar 

  201. Peck JD, et al. Lifestyle factors associated with histologically derived human ovarian non-growing follicle count in reproductive age women. Hum Reprod. 2016;31(1):150–7.

    Article  PubMed  Google Scholar 

  202. Hawkins Bressler L, et al. Alcohol, cigarette smoking, and ovarian reserve in reproductive-age African-American women. Am J Obstet Gynecol. 2016;215(6):758 e1–9.

    Article  PubMed  Google Scholar 

  203. Collett JH, Koo L, Cox B. The influence of micellar concentrations of polysorbate 20 on the in vivo absorption of some substituted benzoic acids. Acta Pharm Suec. 1978;15(2):119–26.

    CAS  PubMed  Google Scholar 

  204. Said RS, et al. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem Pharmacol. 2016;103:140–50.

    Article  CAS  PubMed  Google Scholar 

  205. Muti P, et al. Alcohol consumption and total estradiol in premenopausal women. Cancer Epidemiol Biomarkers Prev. 1998;7(3):189–93.

    CAS  PubMed  Google Scholar 

  206. Shi Q, et al. Interaction of ethanol and nitric oxide in the hypothalamic-pituitary-gonadal axis in the male rat. Alcohol Clin Exp Res. 1998;22(8):1754–62.

    Article  CAS  PubMed  Google Scholar 

  207. Srivastava VK, et al. Effects of ethanol on intraovarian nitric oxide production in the prepubertal rat. J Endocrinol. 1999;161(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  208. Alfonso M, et al. Direct action of ethanol on pituitary prolactin secretion in vitro. Rev Esp Fisiol. 1991;47(3):133–40.

    CAS  PubMed  Google Scholar 

  209. Malhotra N, et al. Does obesity compromise ovarian reserve markers? A clinician’s perspective. Arch Gynecol Obstet. 2013;287(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  210. Su HI, et al. Body size affects measures of ovarian reserve in late reproductive age women. Menopause. 2008;15(5):857–61.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Moslehi N, et al. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause. 2018;25(9):1046–55.

    Article  PubMed  Google Scholar 

  212. Hohos NM, et al. High-fat diet exposure, regardless of induction of obesity, is associated with altered expression of genes critical to normal ovulatory function. Mol Cell Endocrinol. 2018;470:199–207.

    Article  CAS  PubMed  Google Scholar 

  213. Varda NM, Medved M, Ojstersek L. The associations between some biological markers, obesity, and cardiovascular risk in Slovenian children and adolescents. BMC Pediatr. 2020;20(1):81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sominsky L, et al. Neonatal overfeeding induces early decline of the ovarian reserve: Implications for the role of leptin. Mol Cell Endocrinol. 2016;431:24–35.

    Article  CAS  PubMed  Google Scholar 

  215. Silveira Cavalcante F, Aiceles V, da Fonte Ramos C. Leptin regulates gonadotropins and steroid receptors in the rats ovary. Nutr Hosp. 2013;28(1):164–8.

    PubMed  Google Scholar 

  216. Bilbao MG, et al. Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats. Reproduction. 2015;149(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  217. Millar RP, Babwah AV. KISS1R: Hallmarks of an Effective Regulator of the Neuroendocrine Axis. Neuroendocrinology. 2015;101(3):193–210.

    Article  CAS  PubMed  Google Scholar 

  218. Zhou Q, et al. High-fat diet decreases the expression of Kiss1 mRNA and kisspeptin in the ovary, and increases ovulatory dysfunction in postpubertal female rats. Reprod Biol Endocrinol. 2014;12:127.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Fernandois D, et al. Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol. 2016;228(3):161–70.

    Article  CAS  PubMed  Google Scholar 

  220. Gaytan F, et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology. 2014;155(8):3088–97.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Dorfman MD, et al. Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology. 2014;155(8):3098–111.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Nteeba J, et al. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression. Reprod Toxicol. 2013;42:68–77.

    Article  CAS  PubMed  Google Scholar 

  223. Zheng W, et al. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol. 2012;356(1-2):24–30.

    Article  CAS  PubMed  Google Scholar 

  224. Hussain MA, et al. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats. Arch Med Sci. 2016;12(4):906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Jungheim ES, Travieso JL, Hopeman MM. Weighing the impact of obesity on female reproductive function and fertility. Nutr Rev. 2013;71(Suppl 1):S3–8.

    Article  PubMed  Google Scholar 

  226. Sim KA, Partridge SR, Sainsbury A. Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obes Rev. 2014;15(10):839–50.

    CAS  PubMed  Google Scholar 

  227. Lawson MA, et al. Evidence for insulin suppression of baseline luteinizing hormone in women with polycystic ovarian syndrome and normal women. J Clin Endocrinol Metab. 2008;93(6):2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Akamine EH, et al. Obesity induced by high-fat diet promotes insulin resistance in the ovary. J Endocrinol. 2010;206(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  229. Palmer NO, et al. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Fui MN, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian J Androl. 2014;16(2):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schindler AE. Non-contraceptive benefits of hormonal contraceptives. Minerva Ginecol. 2010;62(4):319–29.

    CAS  PubMed  Google Scholar 

  232. Waller DK, et al. Use of oral contraceptives in pregnancy and major structural birth defects in offspring. Epidemiology. 2010;21(2):232–9.

    Article  PubMed  Google Scholar 

  233. van Keep PA, Brand PC, Lehert P. Factors affecting the age at menopause. J Biosoc Sci Suppl. 1979;6:37–55.

    Article  Google Scholar 

  234. Gold EB, et al. Factors related to age at natural menopause: longitudinal analyses from SWAN. Am J Epidemiol. 2013;178(1):70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Palmer JR, et al. Onset of natural menopause in African American women. Am J Public Health. 2003;93(2):299–306.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Celentano E, et al. Correlates of age at natural menopause in the cohorts of EPIC-Italy. Tumori. 2003;89(6):608–14.

    Article  PubMed  Google Scholar 

  237. Hidayet NM, et al. Correlates of age at natural menopause: a community-based study in Alexandria. East Mediterr Health J. 1999;5(2):307–19.

    Article  CAS  PubMed  Google Scholar 

  238. Kaczmarek M. The timing of natural menopause in Poland and associated factors. Maturitas. 2007;57(2):139–53.

    Article  PubMed  Google Scholar 

  239. Garrido-Latorre F, et al. Age of natural menopause among women in Mexico City. Int J Gynaecol Obstet. 1996;53(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  240. Nagel G, et al. Reproductive and dietary determinants of the age at menopause in EPIC-Heidelberg. Maturitas. 2005;52(3-4):337–47.

    Article  PubMed  Google Scholar 

  241. Meschia M, et al. Determinants of age at menopause in Italy: results from a large cross-sectional study. ICARUS Study Group. Italian Climacteric Research Group Study. Maturitas. 2000;34(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  242. Roman Lay AA, et al. Reproductive factors and age at natural menopause: A systematic review and meta-analysis. Maturitas. 2020;131:57–64.

    Article  PubMed  Google Scholar 

  243. Testa G, et al. Case-control study on risk factors for premature ovarian failure. Gynecol Obstet Invest. 2001;51(1):40–3.

    Article  CAS  PubMed  Google Scholar 

  244. Kristensen SL, et al. The association between circulating levels of antimullerian hormone and follicle number, androgens, and menstrual cycle characteristics in young women. Fertil Steril. 2012;97(3):779–85.

    Article  CAS  PubMed  Google Scholar 

  245. Arbo E, et al. Serum anti-mullerian hormone levels and follicular cohort characteristics after pituitary suppression in the late luteal phase with oral contraceptive pills. Hum Reprod. 2007;22(12):3192–6.

    Article  CAS  PubMed  Google Scholar 

  246. Bentzen JG, et al. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reprod Biomed Online. 2012;25(6):612–9.

    Article  CAS  PubMed  Google Scholar 

  247. Birch Petersen K, et al. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod. 2015;30(10):2364–75.

    Article  CAS  PubMed  Google Scholar 

  248. Kloss JD, et al. Sleep, sleep disturbance, and fertility in women. Sleep Med Rev. 2015;22:78–87.

    Article  PubMed  Google Scholar 

  249. Mahoney MM. Shift work, jet lag, and female reproduction. Int J Endocrinol. 2010;2010:813764.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Labyak S, et al. Effects of shiftwork on sleep and menstrual function in nurses. Health Care Women Int. 2002;23(6-7):703–14.

    Article  PubMed  Google Scholar 

  251. Lin JL, Lin YH, Chueh KH. Somatic symptoms, psychological distress and sleep disturbance among infertile women with intrauterine insemination treatment. J Clin Nurs. 2014;23(11-12):1677–84.

    Article  PubMed  Google Scholar 

  252. Zhao X, et al. GnRH antagonist cetrorelix inhibits mitochondria-dependent apoptosis triggered by chemotherapy in granulosa cells of rats. Gynecol Oncol. 2010;118:69–75.

    Article  CAS  PubMed  Google Scholar 

  253. Petrillo SK, et al. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol. 2011;253:94–102.

    Article  CAS  PubMed  Google Scholar 

  254. Kalichphilosoph L, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra62.

    PubMed  Google Scholar 

  255. Reddy P, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009;18(15):2813–24.

    Article  CAS  PubMed  Google Scholar 

  256. Morgan S, et al. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One. 2013;8(7):e70117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Yeh J, et al. Mullerian inhibiting substance as a novel biomarker of cisplatin-induced ovarian damage. Biochem Biophys Res Commun. 2006;348(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  258. Li R, et al. Study on a rat model of cisplatin-induced chemotherapy-induced premature ovarian failure. Reproduction and Contraception. 2011;31(05):294–8.

    Google Scholar 

  259. Gonfloni S. DNA damage stress response in germ cells: role of c-Abl and clinical implications. Oncogene. 2010;29(47):6193–202.

    Article  CAS  PubMed  Google Scholar 

  260. Gonfloni S, et al. Inhibition of the c-AblTAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  261. Tuppi M, et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol. 2018;25(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  262. Suh EK, et al. p63 protects the female germ line during meiotic arrest. Nature. 2006;444:624–8.

    Article  CAS  PubMed  Google Scholar 

  263. Mandic A, et al. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem. 2003;278:9100–6.

    Article  CAS  PubMed  Google Scholar 

  264. Nishi K, et al. Doxorubicin induced female reproductive toxicity: an assessment of ovarian follicular apoptosis, cyclicity and reproductive tissue histology in Wistar rats. Drug Chem Toxicol. 2018;41(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  265. Soleimani R, et al. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6(4):e19475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Pointon AV, et al. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One. 2010;5(9):e12733.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Reza S, et al. Mechanisms of chemotherapy induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging. 2011;3(8):782–93.

    Article  Google Scholar 

  268. Longley DB, et al. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330.

    Article  CAS  PubMed  Google Scholar 

  269. Yuksel A, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category, of the drugs and the type of granulosa cells. Hum Reprod. 2015;30(12):2926–35.

    CAS  PubMed  Google Scholar 

  270. Tal R, et al. A murine 5-fluorouracilbased submyeloablation model for the study of bone marrow derived cell trafficking in reproduction. Endocrinology. 2016;106(3):en20161418.

    Google Scholar 

  271. Lambouras M, et al. Examination of the ovotoxicity of 5-fluorouracil in mice. J Assist Reprod Genet. 2018;35(6):1053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Jinfeng C, et al. Effects of cisplatin, etoposide, vincristine, and bleomycin on human ovarian granulosa cells and their mechanisms. Chinese Journal of Practical Gynecology and Obstetrics. 2012;28(11):835–8.

    Google Scholar 

  273. Utsunomiya T, et al. A novel molecular mechanism for anticancer drug-induced ovarian failure: irinotecan HCl, an anticancer topoisomerase I inhibitor, induces specific FasL expression in granulosa cells of large ovarian follicles to enhance follicular apoptosis. Intl J Oncol. 2008;32:991–1000.

    CAS  Google Scholar 

  274. Takeba Y, et al. Irinotecan-induced apoptosis is inhibited by increased p-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull. 2007;30:1400–6.

    Article  CAS  PubMed  Google Scholar 

  275. Tanaka T, et al. Induction of ATM Activation, Histone H2AX Phosphorylation and Apoptosis by Etoposide. Cell Cycle. 2007;6:371–6.

    Article  CAS  PubMed  Google Scholar 

  276. Feng C. Research progress on the mechanism of arsenic trioxide. Cancer. 2002;21(12):1386–9.

    Google Scholar 

  277. He W, et al. Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion. Toxicol Sci. 2007;99(99):244–53.

    Article  CAS  PubMed  Google Scholar 

  278. Gupta S, et al. Parenthood in patients with acute promyelocytic leukemia after treatment with arsenic trioxide: a case series. Leuk Lymphoma. 2012;53(11):2192–4.

    Article  CAS  PubMed  Google Scholar 

  279. Lushbaugh CC, et al. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–25.

    Article  CAS  PubMed  Google Scholar 

  280. Gosden RG, et al. Impact of congenital or experimental hypogonadotropism on the radiation sensitivity of the mouse ovary. Hum Reprod. 1997;12:2483–8.

    Article  CAS  PubMed  Google Scholar 

  281. Chiarelli AM, et al. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario. Canada. Am J Epidemiol. 1999;150:245–54.

    Article  CAS  PubMed  Google Scholar 

  282. Hirokawa W, et al. The post-operative decline in serum anti-Mullerian hormone correlates with the bilaterality and severity of endometriosis. Hum Reprod. 2011;26(4):904–10.

    Article  CAS  PubMed  Google Scholar 

  283. Zhou Y. Laparoscopic stripping of ovarian endometriosis cysts. Chinese Journal of Clinicians: Electronic Edition. 2009;3(1):166.

    Google Scholar 

  284. Jun Z, et al. The effect of different hemostatic methods on ovarian reserve in laparoscopic ovarian endometriotic cystectomy. Chinese Journal of Obstetrics and Gynecology. 2009;44(8):583–7.

    Google Scholar 

  285. Zhou Y. Excess and deficiency in the treatment of endometriosis. Chinese Journal of Practical Gynecology and Obstetrics. 2011;27(7):503–6.

    Google Scholar 

  286. Siddle N, et al. The effect of hysterectomy on the age at ovarian failure: identification of a subgroup of women with premature loss of ovarian function and literature review. Fertil Steril. 1987;47(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  287. Farquhar CM, et al. The association of hysterectomy and menopause: a prospective cohort study. BJOG. 2005;112(7):956–62.

    Article  PubMed  Google Scholar 

  288. Chen C, Zhaoling L, Editor-in-Chief. Color Doppler Diagnosis of Obstetrics and Gynecology. Beijing: People’s Medical Publishing House; 1998. p. 43–4.

    Google Scholar 

  289. Wang X., et al. Curative effect of laparoscopic hysterectomy for uterine fibroids and its impact on ovarian blood supply.[J] .Exp Ther Med, 2017,14(4):p. 3749-3753.

    Google Scholar 

  290. Arijit S, et al. Deterioration of ovarian function after total abdominal hysterectomy with preservation of ovaries. Endocr Pract. 2016;22(12):1387–92.

    Article  Google Scholar 

  291. Li R. Research progress on gene expression regulation of endometrial insulin-like growth factor system. Adv Modern Obstetr Gynecol. 2000;9(3):212–4.

    Google Scholar 

  292. Torre A, et al. Uterine artery embolization for severe symptomatic fibroids: effects on fertility and symptoms. HumReprod. 2014;29(3):490–501.

    CAS  Google Scholar 

  293. Kaump GR, et al. The impact of uterine artery embolization on ovarian function. J Vasc Interv Radiol. 2013;24(4):459467.

    Article  Google Scholar 

  294. Findley AD, et al. Short-term effects of salpingectomy during laparoscopic hysterectomy on ovarian reserve: a pilot randomized controlled trial. Fertil Steril. 2013;100(6):1704–8.

    Article  PubMed  Google Scholar 

  295. Colafrancesco S, et al. Human papilloma virus vaccine and primary ovarian failure: another facet of the autoimmune/inflammatory syndrome induced by adjuvants. Am J Reprod Immunol. 2013;70(4):309–16.

    Article  CAS  PubMed  Google Scholar 

  296. Little DT, et al. Adolescent Premature Ovarian Insufficiency Following Human Papillomavirus Vaccination: A Case Series Seen in General Practice. J Investig Med High Impact Case Rep. 2014;2(4):1–11.

    Google Scholar 

  297. Gruber N, et al. A link between human papilloma virus vaccination and primary ovarian insufficiency: current analysis. Curr Opin Obstet Gynecol. 2015;27(4):265–70.

    Article  PubMed  Google Scholar 

  298. Naleway AL, et al. Primary Ovarian Insufficiency and Adolescent Vaccination. Pediatrics. 2018;142(3):e20180943.

    Article  PubMed  Google Scholar 

  299. Zhang J, et al. Repeated superovulation increases the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging in mice. Aging (Albany NY). 2018;10(5):1089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Guo YH, et al. Research Survey of Tripterygium Wilfordii’s Toxicity. Traditional Chinese Medicine. 2007;30(1):112–7.

    CAS  Google Scholar 

  301. Ye WS, et al. Antifertility of Tripterygium Wilfordii Monomer Thranolide in Male Rats. Chinese Pharmacological Bulletin. 1992;2(8):115–7.

    Google Scholar 

  302. Pu FJ, et al. Analysis of 11 cases of amenorrhea in women of childbearing age caused by tripterygium wilfordii polyglycoside. Journal of Practical Medical Technology. 2004;11(2):188.

    Google Scholar 

  303. Shen J, et al. Study on the animal model of kidney deficiency and reproductive dysfunction in female mice induced by Tripterygium wilfordii polyglycosides. New Chinese Medicine and Clinical Pharmacology. 2007;5(18):208–11.

    Google Scholar 

  304. Luborsky J, et al. Ovarian autoimmunity: greater frequency of autoantibodies in premature menopause and unexplained infertility than in the general population. Clin Immunol. 1999;90(3):368–74.

    Article  CAS  PubMed  Google Scholar 

  305. Shamilova NN, et al. The role of genetic and autoimmune factors in premature ovarian failure. J Assist Reprod Genet. 2013;30(5):617–22.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Ishizuka B, et al. Anti-nuclear antibodies in patients with premature ovarian failure. Hum Reprod. 1999;14(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  307. Melner MH, Feltus FA. Autoimmune premature ovarian failure--endocrine aspects of a T cell disease. Endocrinology. 1999;140(8):3401–3.

    Article  CAS  PubMed  Google Scholar 

  308. Shao MJ, et al. Changes in the Level of Immunoglobulins and CD4/CD8 Ratio in Young and Aged Mice with Estradiol Deficiency. Immunol Invest. 2017;46(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  309. Chernyshov VP, et al. Immune disorders in women with premature ovarian failure in initial period. Am J Reprod Immunol. 2001;46(3):220–5.

    Article  CAS  PubMed  Google Scholar 

  310. Komorowska B. Autoimmune premature ovarian failure. Prz Menopauzalny. 2016;15(4):210–4.

    PubMed  Google Scholar 

  311. Košir Pogačnik R, et al. Possible role of autoimmunity in patients with premature ovarian insufficiency. Int J Fertil Steril. 2014;7(4):281–90.

    PubMed  Google Scholar 

  312. Morrison JC, et al. Mumps Oophoritis: A Cause of Premature Menopause**Supported by Grant RR-211 from the General Clinical Research Center Program at the National Institutes of Health to the University of Tennessee Research Center, where this study was conducted. Fertility and Sterility. 1975;26(7):655–9.

    Article  CAS  PubMed  Google Scholar 

  313. Taparelli F, et al. Isolation of mumps virus from vaginal secretions in association with oophoritis. J Infect. 1988;17(3):255–8.

    Article  CAS  PubMed  Google Scholar 

  314. Prinz W, Taubert HD. Mumps in pubescent females and its effect on later reproductive function. Gynaecologia. 1969;167(1):23–7.

    CAS  PubMed  Google Scholar 

  315. Wang Q, et al. Mumps virus induces innate immune responses in mouse ovarian granulosa cells through the activation of Toll-like receptor 2 and retinoic acid-inducible gene I. Mol Cell Endocrinol. 2016;436:183–94.

    Article  CAS  PubMed  Google Scholar 

  316. Cejtin HE, et al. Effects of human immunodeficiency virus on protracted amenorrhea and ovarian dysfunction. Obstet Gynecol. 2006;108(6):1423–31.

    Article  PubMed  Google Scholar 

  317. Cohen CR, et al. Effect of human immunodeficiency virus type 1 infection upon acute salpingitis: a laparoscopic study. J Infect Dis. 1998;178(5):1352–8.

    Article  CAS  PubMed  Google Scholar 

  318. Sobel JD. Gynecologic infections in human immunodeficiency virus-infected women. Clin Infect Dis. 2000;31(5):1225–33.

    Article  CAS  PubMed  Google Scholar 

  319. Coll O, et al. Fertility assessment in non-infertile HIV-infected women and their partners. Reprod Biomed Online. 2007;14(4):488–94.

    Article  CAS  PubMed  Google Scholar 

  320. Savasi V, et al. Reproductive assistance in HIV serodiscordant couples. Hum Reprod Update. 2013;19(2):136–50.

    Article  CAS  PubMed  Google Scholar 

  321. Ohl J, et al. Alterations of ovarian reserve tests in Human Immunodeficiency Virus (HIV)-infected women. Gynecol Obstet Fertil. 2010;38(5):313–7.

    Article  CAS  PubMed  Google Scholar 

  322. Santulli P, et al. Decreased ovarian reserve in HIV-infected women. AIDS. 2016;30(7):1083–8.

    Article  PubMed  Google Scholar 

  323. Wessman M, et al. Anti-mullerian hormone levels are reduced in women living with human immunodeficiency virus compared to control women: a case-control study from Copenhagen. Denmark. J Virus Erad. 2018;4(2):123–7.

    Article  PubMed  Google Scholar 

  324. Awodele O, et al. Investigations into the Risk of Reproductive Toxicity Following Exposure to Highly Active Anti-Retroviral Drugs in Rodents. Tokai J Exp Clin Med. 2018;43(2):54–63.

    CAS  PubMed  Google Scholar 

  325. Gupta N, et al. Genital tuberculosis in Indian infertility patients. Int J Gynaecol Obstet. 2007;97(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  326. Jirge PR, et al. Latent genital tuberculosis adversely affects the ovarian reserve in infertile women. Hum Reprod. 2018;33(7):1262–9.

    Article  CAS  PubMed  Google Scholar 

  327. Borodin Iu I, et al. The morphometric characteristics of the blood microcirculatory bed of the ovary and uterine tube in rats with aseptic inflammation and after the use of a carbon-mineral sorbent. Arkh Anat Gistol Embriol. 1991;100(5):37–41.

    CAS  PubMed  Google Scholar 

  328. Du B, et al. Usefulness of intraovarian artery pulsatility and resistance indices measurement on the day of follicle aspiration for the assessment of oocyte quality. Fertil Steril. 2006;85(2):366–70.

    Article  CAS  PubMed  Google Scholar 

  329. Lin CJ, et al. Postoperative maintenance levonorgestrel-releasing intrauterine system for symptomatic uterine adenomyoma. Taiwan J Obstet Gynecol. 2018;57(1):47–51.

    Article  PubMed  Google Scholar 

  330. Codes L, et al. Liver fibrosis in women with chronic hepatitis C: evidence for the negative role of the menopause and steatosis and the potential benefit of hormone replacement therapy. Gut. 2007;56(3):390–5.

    Article  PubMed  Google Scholar 

  331. Villa E, et al. Reproductive status is associated with the severity of fibrosis in women with hepatitis C. PLoS One. 2012;7(9):e44624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Karampatou A, et al. Premature ovarian senescence and a high miscarriage rate impair fertility in women with HCV. J Hepatol. 2017;68(1):33–41.

    Article  Google Scholar 

  333. Caine EA, et al. Zika virus causes acute infection and inflammation in the ovary of mice without apparent defects in fertility. J Infect Dis. 2019;220:1904–14.

    Article  PubMed  PubMed Central  Google Scholar 

  334. Bunevicius A, Leserman J, Girdler S. Hypothalamic-pituitary-thyroid axis function in women with a menstrually related mood disorder: association with histories of sexual abuse. Psychosom Med. 2012;74(8):810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  335. Colella M, et al. Thyroid hormones and functional ovarian reserve: systemic vs. peripheral dysfunctions. J Clin Med. 2020;9(6)

    Google Scholar 

  336. Cho MK. Thyroid dysfunction and subfertility. Clin Exp Reprod Med. 2015;42(4):131–5.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Jacobson MH, et al. Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women. Paediatr Perinat Epidemiol. 2018;32(3):225–34.

    Article  PubMed  PubMed Central  Google Scholar 

  338. Weghofer A, et al. What affects functional ovarian reserve, thyroid function or thyroid autoimmunity? Reprod Biol Endocrinol. 2016;14

    Google Scholar 

  339. Schweiger BM, et al. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reprod Biol Endocrinol. 2011;9:61.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Gauthier BR, et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11)

    Google Scholar 

  341. Wellons MF, Matthews JJ, Kim C. Ovarian Aging in Women with Diabetes: An Overview. Maturitas. 2017;96:109–13.

    Article  CAS  PubMed  Google Scholar 

  342. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473(11):1483–501.

    Article  CAS  PubMed  Google Scholar 

  343. Ruderman NB, et al. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123(7):2764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Yi Y, et al. Effect of age at menarche on microvascular complications among women with Type 1 diabetes. Diabet Med.

    Google Scholar 

  345. Lin CM, Huang YL, Lin ZY. Influence of Gender on Serum Growth Hormone, Insulin-Like Growth Factor-I and Its Binding Protein-3 during Aging. Yonsei Med J. 2009;50(3):407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Ipsa E, et al. Growth hormone and insulin-like growth factor action in reproductive tissues. Front Endocrinol (Lausanne). 2019:10.

    Google Scholar 

  347. Yoshimura Y. Insulin-like growth factors and their binding proteins: Potential relevance to reproductive physiology. Reprod Med Biol. 2003;2(1):1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  348. Ebrahimi M, Akbari Asbagh F. The role of autoimmunity in premature ovarian failure. Iran. J Reprod Med. 2015;13(8):461–72.

    Google Scholar 

  349. Li CJ, et al. The molecular regulation in the pathophysiology in ovarian aging. Aging Dis. 2021;12(3):934–49.

    Article  PubMed  PubMed Central  Google Scholar 

  350. Yang L, et al. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol. 2020:11.

    Google Scholar 

  351. Silvestris E, Lovero D, Palmirotta R. Nutrition and female fertility: an interdependent correlation. Front Endocrinol (Lausanne). 2019:10.

    Google Scholar 

  352. Salazar-Ortiz J, Monget P, Guillaume D. The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus). Reprod Biol Endocrinol. 2014;12:72.

    Article  PubMed  PubMed Central  Google Scholar 

  353. Ribeiro JC, et al. Antioxidants present in reproductive tract fluids and their relevance for fertility. Antioxidants (Basel). 2021;10(9)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, S. et al. (2023). Ovarian Aging Etiology and Risk Factors. In: Wang, S. (eds) Ovarian Aging. Springer, Singapore. https://doi.org/10.1007/978-981-19-8848-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8848-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8847-9

  • Online ISBN: 978-981-19-8848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics