Skip to main content

Approved Protein Therapeutics and Their Biochemical Targets

  • Chapter
  • First Online:
Protein-based Therapeutics

Abstract

Therapeutic proteins have shown unprecedented success and enjoy a significant share of the biotechnology market. These include diverse molecules such as monoclonal antibodies (mAbs), peptide hormones, growth factors, plasma proteins, enzymes, and hemolytic factors. The biochemical aspects of these molecules demand considerable attention as the exact roles or mechanism of action remains elusive in some cases. Nevertheless, these drug molecules have shown notable success in clinical trials and have been successfully approved by the regulatory bodies. With a brief discussion on the drug approval process and the therapeutic proteins classification, we cover the biochemistry and rationale behind the design aspects of some of the recently approved protein therapeutics. A few examples from various classes of protein therapeutics and the biochemistry underlying design and target(s) selection are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277

    Article  CAS  PubMed  Google Scholar 

  2. Drews J (2000) Drug discovery: a historical perspective. Science (New York, NY) 287:1960–1964

    Article  CAS  Google Scholar 

  3. Darrow JJ, Avorn J, Kesselheim AS (2020) FDA approval and regulation of pharmaceuticals, 1983–2018. JAMA 323:164–176

    Article  PubMed  Google Scholar 

  4. Andrews L, Ralston S, Blomme E, Barnhart K (2015) A snapshot of biologic drug development: challenges and opportunities. Hum Exp Toxicol 34:1279–1285

    Article  CAS  PubMed  Google Scholar 

  5. Brown DG, Wobst HJ (2021) A decade of FDA-approved drugs (2010–2019): trends and future directions. J Med Chem 64:2312–2338

    Article  CAS  PubMed  Google Scholar 

  6. Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS One 11:e0147215

    Article  PubMed  PubMed Central  Google Scholar 

  7. Umscheid CA, Margolis DJ, Grossman CE (2011) Key concepts of clinical trials: a narrative review. Postgrad Med 123:194–204

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bighelli I, Barbui C (2012) What is the European medicines agency? Epidemiol Psychiatr Sci 21:245–247

    Article  CAS  PubMed  Google Scholar 

  9. Hojo T (2017) [Regulatory science in practice (Pharmaceuticals and medical devices agency)], Yakugaku zasshi. J Pharmaceut Soc Jpn 137:439–442

    Article  CAS  Google Scholar 

  10. Sinha R, Shukla P (2019) Current trends in protein engineering: updates and progress. Curr Protein Pept Sci 20:398–407

    Article  CAS  PubMed  Google Scholar 

  11. Brannigan JA, Wilkinson AJ (2002) Protein engineering 20 years on. Nat Rev Mol Cell Biol 3:964–970

    Article  CAS  PubMed  Google Scholar 

  12. Bertolini LR, Meade H, Lazzarotto CR, Martins LT, Tavares KC, Bertolini M, Murray JD (2016) The transgenic animal platform for biopharmaceutical production. Transgenic Res 25:329–343

    Article  CAS  PubMed  Google Scholar 

  13. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  CAS  PubMed  Google Scholar 

  14. Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317:1261–1269

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol (Clifton, NJ) 899:1–26

    Article  CAS  Google Scholar 

  16. Kinch MS (2015) An overview of FDA-approved biologics medicines. Drug Discov Today 20:393–398

    Article  CAS  PubMed  Google Scholar 

  17. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12:e0181748

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lagassé HA, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C (2017) Recent advances in (therapeutic protein) drug development. F1000Research 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mullard A (2020) FDA drug approvals. Nat Rev Drug Discov 20(2021):85–90

    Google Scholar 

  20. Markham A (2020) Teprotumumab: first approval. Drugs 80:509–512

    Article  CAS  PubMed  Google Scholar 

  21. Bahn RS (2010) Graves’ ophthalmopathy. N Engl J Med 362:726–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahaly GJ, Diana T, Olivo PD (2020) TSH receptor antibodies: relevance & utility. Endocr Pract 26:97–106

    Article  PubMed  Google Scholar 

  23. Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Stagnaro-Green A, Kahaly GJ (2020) Graves’ disease. Nat Rev Dis Primers 6:52

    Article  PubMed  Google Scholar 

  24. Chen H, Mester T, Raychaudhuri N, Kauh CY, Gupta S, Smith TJ, Douglas RS (2014) Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab 99:E1635–E1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paik JS, Kim SE, Kim JH, Lee JY, Yang SW, Lee SB (2020) Insulin-like growth factor-1 enhances the expression of functional TSH receptor in orbital fibroblasts from thyroid-associated ophthalmopathy. Immunobiology 225:151902

    Article  CAS  PubMed  Google Scholar 

  26. Douglas RS, Kahaly GJ, Patel A, Sile S, Thompson EHZ, Perdok R, Fleming JC, Fowler BT, Marcocci C, Marinò M, Antonelli A, Dailey R, Harris GJ, Eckstein A, Schiffman J, Tang R, Nelson C, Salvi M, Wester S, Sherman JW, Vescio T, Holt RJ, Smith TJ (2020) Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med 382:341–352

    Article  CAS  PubMed  Google Scholar 

  27. Hakuno F, Takahashi SI (2018) IGF1 receptor signaling pathways. J Mol Endocrinol 61:T69–t86

    Article  CAS  PubMed  Google Scholar 

  28. Mullard A (2019) FDA drug approvals. Nat Rev Drug Discov 19(2020):79–84

    Google Scholar 

  29. Griffiths CE, Barker JN (2007) Pathogenesis and clinical features of psoriasis. Lancet (London, England) 370:263–271

    Article  CAS  PubMed  Google Scholar 

  30. Armstrong AW, Read C (2020) Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323:1945–1960

    Article  CAS  PubMed  Google Scholar 

  31. Hawkes JE, Yan BY, Chan TC, Krueger JG (1950) Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol (Baltimore, MD) 201(2018):1605–1613

    Google Scholar 

  32. Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129:1339–1350

    Article  PubMed  Google Scholar 

  33. Zhou F, Zhu Z, Gao J, Yang C, Wen L, Liu L, Zuo X, Zheng X, Shi Y, Zhu C, Liang B, Yin X, Wang W, Cheng H, Shen S, Tang X, Tang H, Sun L, Zhang A, Yang S, Zhang X, Sheng Y (2018) NFKB1 mediates Th1/Th17 activation in the pathogenesis of psoriasis. Cell Immunol 331:16–21

    Article  CAS  PubMed  Google Scholar 

  34. Gu C, Yang J (2019) Risankizumab for the treatment of psoriasis. Expert Rev Clin Pharmacol 12:851–857

    Article  CAS  PubMed  Google Scholar 

  35. Gordon KB, Strober B, Lebwohl M, Augustin M, Blauvelt A, Poulin Y, Papp KA, Sofen H, Puig L, Foley P, Ohtsuki M, Flack M, Geng Z, Gu Y, Valdes JM, Thompson EHZ, Bachelez H (2018) Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomized, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet (London, England) 392:650–661

    Article  CAS  PubMed  Google Scholar 

  36. Haugh IM, Preston AK, Kivelevitch DN, Menter AM (2018) Risankizumab: an anti-IL-23 antibody for the treatment of psoriasis. Drug Des Devel Ther 12:3879–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrini F, Kündig T, Sallusto F, Hofbauer GF, Haak S, Becher B (2016) IL-12 protects from psoriasiform skin inflammation. Nat Commun 7:13466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai F, Li GG, Liu Q, Niu X, Li R, Ma H (2019) Short-term efficacy and safety of IL-17, IL-12/23, and IL-23 inhibitors Brodalumab, Secukinumab, Ixekizumab, Ustekinumab, Guselkumab, Tildrakizumab, and Risankizumab for the treatment of moderate to severe plaque psoriasis: a systematic review and network meta-analysis of randomized controlled trials. J Immunol Res 2019:2546161

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thomas A, Teicher BA, Hassan R (2016) Antibody-drug conjugates for cancer therapy. Lancet Oncol 17:e254–e262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chau CH, Steeg PS, Figg WD (2019) Antibody-drug conjugates for cancer. Lancet (London, England) 394:793–804

    Article  CAS  PubMed  Google Scholar 

  41. Syed YY (2020) Sacituzumab Govitecan: first approval. Drugs 80:1019–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM (2015) Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 6:22496–22512

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goldenberg DM, Stein R, Sharkey RM (2018) The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 9:28989–29006

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P (2020) Trop2: Jack of all trades, master of none. Cancer 12

    Google Scholar 

  45. Spring LM, Nakajima E, Hutchinson J, Viscosi E, Blouin G, Weekes C, Rugo H, Moy B, Bardia A (2021) Sacituzumab Govitecan for metastatic triple-negative breast cancer: clinical overview and management of potential toxicities. Oncologist 26:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weiss J, Glode A, Messersmith WA, Diamond J (2019) Sacituzumab govitecan: breakthrough targeted therapy for triple-negative breast cancer. Expert Rev Anticancer Ther 19:673–679

    Article  CAS  PubMed  Google Scholar 

  47. Khageh Hosseini S, Kolterer S, Steiner M, von Manstein V, Gerlach K, Trojan J, Waidmann O, Zeuzem S, Schulze JO, Hahn S, Steinhilber D, Gatterdam V, Tampé R, Biondi RM, Proschak E, Zörnig M (2017) Camptothecin and its analog SN-38, the active metabolite of irinotecan, inhibit binding of the transcriptional regulator and oncoprotein FUBP1 to its DNA target sequence FUSE. Biochem Pharmacol 146:53–62

    Article  CAS  PubMed  Google Scholar 

  48. Becnel MR, Lee HC (2020) The role of belantamab mafodotin for patients with relapsed and/or refractory multiple myeloma. Therapeut Adv Hematol 11:2040620720979813

    Article  CAS  Google Scholar 

  49. Pieper K, Grimbacher B, Eibel H (2013) B-cell biology and development. J Allergy Clin Immunol 131:959–971

    Article  CAS  PubMed  Google Scholar 

  50. Shah N, Chari A, Scott E, Mezzi K, Usmani SZ (2020) B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 34:985–1005

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264

    Article  CAS  PubMed  Google Scholar 

  52. Ryan MC, Grewal IS (2009) Targeting of BAFF and APRIL for autoimmunity and oncology. Adv Exp Med Biol 647:52–63

    Article  CAS  PubMed  Google Scholar 

  53. Moreaux J, Legouffe E, Jourdan E, Quittet P, Rème T, Lugagne C, Moine P, Rossi JF, Klein B, Tarte K (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103:3148–3157

    Article  CAS  PubMed  Google Scholar 

  54. Sokka IK, Ekholm FS, Johansson MP (2019) Increasing the potential of the Auristatin cancer-drug family by shifting the conformational equilibrium. Mol Pharm 16:3600–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheikh S, Lebel E, Trudel S (2020) Belantamab mafodotin in the treatment of relapsed or refractory multiple myeloma. Future Oncol (London, England) 16:2783–2798

    Article  CAS  Google Scholar 

  56. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, Abdallah AO, Callander N, Lendvai N, Sborov D, Suvannasankha A, Weisel K, Karlin L, Libby E, Arnulf B, Facon T, Hulin C, Kortüm KM, Rodríguez-Otero P, Usmani SZ, Hari P, Baz R, Quach H, Moreau P, Voorhees PM, Gupta I, Hoos A, Zhi E, Baron J, Piontek T, Lewis E, Jewell RC, Dettman EJ, Popat R, Esposti SD, Opalinska J, Richardson P, Cohen AD (2020) Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomized, open-label, phase 2 study. Lancet Oncol 21:207–221

    Article  CAS  PubMed  Google Scholar 

  57. Labrijn AF, Janmaat ML, Reichert JM, Parren P (2019) Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18:585–608

    Article  CAS  PubMed  Google Scholar 

  58. Krishnamurthy A, Jimeno A (2018) Bispecific antibodies for cancer therapy: a review. Pharmacol Ther 185:122–134

    Article  CAS  PubMed  Google Scholar 

  59. Trabolsi A, Arumov A, Schatz JH (1950) T cell-activating bispecific antibodies in cancer therapy. J Immunol (Baltimore, MD) 203(2019):585–592

    Google Scholar 

  60. Thakur A, Huang M, Lum LG (2018) Bispecific antibody based therapeutics: strengths and challenges. Blood Rev 32:339–347

    Article  CAS  PubMed  Google Scholar 

  61. Sanford M (2015) Blinatumomab: first global approval. Drugs 75:321–327

    Article  CAS  PubMed  Google Scholar 

  62. Le Jeune C, Thomas X (2016) Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia. Drug Des Devel Ther 10:757–765

    PubMed  PubMed Central  Google Scholar 

  63. Rogala B, Freyer CW, Ontiveros EP, Griffiths EA, Wang ES, Wetzler M (2015) Blinatumomab: enlisting serial killer T-cells in the war against hematologic malignancies. Expert Opin Biol Ther 15:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zimmerman Z, Maniar T, Nagorsen D (2015) Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy. Int Immunol 27:31–37

    Article  CAS  PubMed  Google Scholar 

  65. Johnson AM, Bullock BL, Neuwelt AJ, Poczobutt JM, Kaspar RE, Li HY, Kwak JW, Hopp K, Weiser-Evans MCM, Heasley LE, Schenk EL, Clambey ET, Nemenoff RA (2020) Cancer cell–intrinsic expression of MHC class II regulates the immune microenvironment and response to anti-PD-1 therapy in lung adenocarcinoma. J Immunol 204:2295–2307

    Article  CAS  PubMed  Google Scholar 

  66. Bassan R (2012) Toward victory in adult ALL: blinatumomab joins in. Blood 120:5094–5095

    Article  CAS  PubMed  Google Scholar 

  67. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, Chowdhury EH (2019) Current strategies in extending half-lives of therapeutic proteins. J Control Release 301:176–189

    Article  CAS  PubMed  Google Scholar 

  68. Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D’Atri V (2021) Therapeutic Fc-fusion proteins: current analytical strategies. J Sep Sci 44:35–62

    Article  CAS  PubMed  Google Scholar 

  69. Jafari R, Zolbanin NM, Rafatpanah H, Majidi J, Kazemi T (2017) Fc-fusion proteins in therapy: an updated view. Curr Med Chem 24:1228–1237

    Article  CAS  PubMed  Google Scholar 

  70. Yang C, Gao X, Gong R (2018) Engineering of Fc fragments with optimized physicochemical properties implying improvement of clinical potentials for Fc-based therapeutics. Front Immunol 8

    Google Scholar 

  71. Markham A (2020) Luspatercept: first approval. Drugs 80:85–90

    Article  PubMed  Google Scholar 

  72. Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12:61–76

    Article  CAS  PubMed  Google Scholar 

  73. Thein SL (2018) Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis 70:54–65

    Article  CAS  PubMed  Google Scholar 

  74. Vander Ark A, Cao J, Li X (2018) TGF-β receptors: in and beyond TGF-β signaling. Cell Signal 52:112–120

    Article  CAS  PubMed  Google Scholar 

  75. Hata A, Chen YG (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8

    Google Scholar 

  76. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  PubMed  Google Scholar 

  77. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  78. Han S (2011) Crystal structure of activin receptor type IIB kinase domain. Vitam Horm 85:29–38

    Article  CAS  PubMed  Google Scholar 

  79. Martinez PA, Suragani RN, Bhasin M, Li R, Pearsall RS, Kumar R (2015) Rap-536 (murine ACE-536/Luspatercept) inhibits Smad2/3 signaling and promotes erythroid differentiation by restoring GATA-1 function in murine b-Thalassemia. Blood 126:751–751

    Article  Google Scholar 

  80. Cappellini MD, Taher AT (2021) The use of luspatercept for thalassemia in adults. Blood Adv 5:326–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Piga A, Perrotta S, Gamberini MR, Voskaridou E, Melpignano A, Filosa A, Caruso V, Pietrangelo A, Longo F, Tartaglione I, Borgna-Pignatti C, Zhang X, Laadem A, Sherman ML, Attie KM (2019) Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood 133:1279–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cappellini MD, Viprakasit V, Taher AT, Georgiev P, Kuo KHM, Coates T, Voskaridou E, Liew HK, Pazgal-Kobrowski I, Forni GL, Perrotta S, Khelif A, Lal A, Kattamis A, Vlachaki E, Origa R, Aydinok Y, Bejaoui M, Ho PJ, Chew LP, Bee PC, Lim SM, Lu MY, Tantiworawit A, Ganeva P, Gercheva L, Shah F, Neufeld EJ, Thompson A, Laadem A, Shetty JK, Zou J, Zhang J, Miteva D, Zinger T, Linde PG, Sherman ML, Hermine O, Porter J, Piga A (2020) A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med 382:1219–1231

    Article  CAS  PubMed  Google Scholar 

  83. Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, Davies MV, Alexander MJ, Devine M, Loveday KS, Underwood KW, Grinberg AV, Quisel JD, Chopra R, Pearsall RS, Seehra J, Kumar R (2014) Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 20:408–414

    Article  CAS  PubMed  Google Scholar 

  84. Frampton JE (2021) Efmoroctocog Alfa: a review in Haemophilia A. Drugs 81:2035–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samuelson Bannow B, Recht M, Négrier C, Hermans C, Berntorp E, Eichler H, Mancuso ME, Klamroth R, O'Hara J, Santagostino E, Matsushita T, Kessler C (2019) Factor VIII: long-established role in haemophilia A and emerging evidence beyond haemostasis. Blood Rev 35:43–50

    Article  CAS  PubMed  Google Scholar 

  86. Fay PJ (2006) Factor VIII structure and function. Int J Hematol 83:103–108

    Article  CAS  PubMed  Google Scholar 

  87. Fay PJ, Jenkins PV (2005) Mutating factor VIII: lessons from structure to function. Blood Rev 19:15–27

    Article  CAS  PubMed  Google Scholar 

  88. Tiede A (2015) Half-life extended factor VIII for the treatment of hemophilia A. J Thrombosis Haemostasis JTH 13(Suppl 1):S176–S179

    Article  CAS  Google Scholar 

  89. Phillips JD (2019) Heme biosynthesis and the porphyrias. Mol Genet Metab 128:164–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Balwani M (2019) Erythropoietic protoporphyria and X-linked protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab 128:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Switonski M, Mankowska M, Salamon S (2013) Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects. J Appl Genet 54:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolf Horrell EM, Boulanger MC, D’Orazio JA (2016) Melanocortin 1 receptor: structure, function, and regulation. Front Genet 7:95

    Article  PubMed  PubMed Central  Google Scholar 

  93. Singh M, Mukhopadhyay K (2014) Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed Res Int 2014:874610

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wensink D, Wagenmakers MAEM, Langendonk JG (2021) Afamelanotide for prevention of phototoxicity in erythropoietic protoporphyria. Expert Rev Clin Pharmacol 14:151–160

    Article  CAS  PubMed  Google Scholar 

  95. Yuan S, Yu B, Liu H-M (2020) New drug approvals for 2019: synthesis and clinical applications. Eur J Med Chem 205:112667

    Article  CAS  PubMed  Google Scholar 

  96. Mullard A (2017) FDA drug approvals. Nat Rev Drug Discov 17(2018):81–85

    Google Scholar 

  97. Bluet-Pajot MT, Tolle V, Zizzari P, Robert C, Hammond C, Mitchell V, Beauvillain JC, Viollet C, Epelbaum J, Kordon C (2001) Growth hormone secretagogues and hypothalamic networks. Endocrine 14:1–8

    Article  CAS  PubMed  Google Scholar 

  98. Chinoy A, Murray PG (2016) Diagnosis of growth hormone deficiency in the paediatric and transitional age. Best Practice Res Clin Endocrinol Metab 30:737–747

    Article  CAS  Google Scholar 

  99. Jørgensen JO, Müller J, Møller J, Wolthers T, Vahl N, Juul A, Skakkebaek NE, Christiansen JS (1994) Adult growth hormone deficiency. Horm Res 42:235–241

    Article  PubMed  Google Scholar 

  100. Kato Y, Murakami Y, Sohmiya M, Nishiki M (2002) Regulation of human growth hormone secretion and its disorders. Intern Med (Tokyo, Japan) 41:7–13

    Article  CAS  Google Scholar 

  101. Ghigo E, Aimaretti G, Corneli G (2008) Diagnosis of adult GH deficiency. Growth Horm IGF Res 18:1–16

    Article  CAS  PubMed  Google Scholar 

  102. Díez JJ, Sangiao-Alvarellos S, Cordido F (2018) Treatment with growth hormone for adults with growth hormone deficiency syndrome: benefits and risks. Int J Mol Sci 19

    Google Scholar 

  103. Klaus B, Sachse R, Ammer N, Kelepouris N, Ostrow V (2020) Safety, tolerability, pharmacokinetics, and pharmacodynamics of macimorelin in healthy adults: results of a single-dose, randomized controlled study. Growth Horm IGF Res 52:101321

    Article  CAS  PubMed  Google Scholar 

  104. Garcia JM, Swerdloff R, Wang C, Kyle M, Kipnes M, Biller BM, Cook D, Yuen KC, Bonert V, Dobs A, Molitch ME, Merriam GR (2013) Macimorelin (AEZS-130)-stimulated growth hormone (GH) test: validation of a novel oral stimulation test for the diagnosis of adult GH deficiency. J Clin Endocrinol Metab 98:2422–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Holubová M, Spolcová A, Demianová Z, Sýkora D, Fehrentz JA, Martinez J, Stofková A, Jurčovičová J, Drápalová J, Lacinová Z, Haluzík M, Zelezná B, Maletínská L (2013) Ghrelin agonist JMV 1843 increases food intake, body weight and expression of orexigenic neuropeptides in mice. Physiol Res 62:435–444

    Article  PubMed  Google Scholar 

  106. Hillmen P, Szer J, Weitz I, Röth A, Höchsmann B, Panse J, Usuki K, Griffin M, Kiladjian J-J, de Castro C, Nishimori H, Tan L, Hamdani M, Deschatelets P, Francois C, Grossi F, Ajayi T, Risitano A, de la Tour RP (2021) Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 384:1028–1037

    Article  CAS  PubMed  Google Scholar 

  107. Brodsky RA (2014) Paroxysmal nocturnal hemoglobinuria. Blood 124:2804–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruiz-Argüelles A, Llorente L (2007) The role of complement regulatory proteins (CD55 and CD59) in the pathogenesis of autoimmune hemocytopenias. Autoimmun Rev 6:155–161

    Article  PubMed  Google Scholar 

  109. Hill A, DeZern AE, Kinoshita T, Brodsky RA (2017) Paroxysmal nocturnal haemoglobinuria. Nat Rev Dis Primers 3:17028

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schröder-Braunstein J, Kirschfink M (2019) Complement deficiencies and dysregulation: pathophysiological consequences, modern analysis, and clinical management. Mol Immunol 114:299–311

    Article  PubMed  Google Scholar 

  111. Dobó J, Kocsis A, Gál P (2018) Be on target: strategies of targeting alternative and lectin pathway components in complement-mediated diseases. Front Immunol 9

    Google Scholar 

  112. Harboe M, Mollnes TE (2008) The alternative complement pathway revisited. J Cell Mol Med 12:1074–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kulasekararaj AG, Hill A, Rottinghaus ST, Langemeijer S, Wells R, Gonzalez-Fernandez FA, Gaya A, Lee JW, Gutierrez EO, Piatek CI, Szer J, Risitano A, Nakao S, Bachman E, Shafner L, Damokosh AI, Ortiz S, Röth A, Peffault de Latour R (2019) Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood 133:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McKinley CE, Richards SJ, Munir T, Griffin M, Mitchell LD, Arnold L, Riley K, Copeland N, Newton DJ, Hill A, Hillmen P (2017) Extravascular hemolysis due to C3-loading in patients with PNH treated with eculizumab: defining the clinical syndrome. Blood 130:3471–3471

    Google Scholar 

  115. de Castro C, Grossi F, Weitz IC, Maciejewski J, Sharma V, Roman E, Brodsky RA, Tan L, Di Casoli C, El Mehdi D, Deschatelets P, Francois C (2020) C3 inhibition with pegcetacoplan in subjects with paroxysmal nocturnal hemoglobinuria treated with eculizumab. Am J Hematol 95:1334–1343

    Article  PubMed  PubMed Central  Google Scholar 

  116. Urquhart L (2021) FDA new drug approvals in Q3 2021. Nat Rev Drug Disc

    Google Scholar 

  117. Brooks AJ, Waters MJ (2010) The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 6:515–525

    Article  CAS  PubMed  Google Scholar 

  118. Thornton PS, Maniatis AK, Aghajanova E, Chertok E, Vlachopapadopoulou E, Lin Z, Song W, Christoffersen ED, Breinholt VM, Kovalenko T, Giorgadze E, Korpal-Szczyrska M, Hofman PL, Karpf DB, Shu AD, Beckert M (2021) Weekly lonapegsomatropin in treatment-naïve children with growth hormone deficiency: the phase 3 heiGHt trial. J Clin Endocrinol Metab

    Google Scholar 

  119. Liongue C, Ward AC (2007) Evolution of Class I cytokine receptors. BMC Evol Biol 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  120. Reh CS, Geffner ME (2010) Somatotropin in the treatment of growth hormone deficiency and Turner syndrome in pediatric patients: a review. Clin Pharmacol Adv Appl 2:111–122

    CAS  Google Scholar 

  121. Dehkhoda F, Lee CMM, Medina J, Brooks AJ (2018) The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front Endocrinol 9

    Google Scholar 

  122. Carter-Su C, Schwartz J, Argetsinger LS (2016) Growth hormone signaling pathways. Growth Hormone IGF Res 28:11–15

    Article  CAS  Google Scholar 

  123. Laron Z (2001) Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol 54:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang J, Zhou J, Cheng CM, Kopchick JJ, Bondy CA (2004) Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J Endocrinol 180:247–255

    Article  CAS  PubMed  Google Scholar 

  125. Wu S, Yang W, De Luca F (2015) Insulin-like growth factor-independent effects of growth hormone on growth plate chondrogenesis and longitudinal bone growth. Endocrinology 156:2541–2551

    Article  CAS  PubMed  Google Scholar 

  126. Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400:576–581

    Article  CAS  PubMed  Google Scholar 

  127. Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci USA 103:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Collet TH, Dubern B, Mokrosinski J, Connors H, Keogh JM, Mendes de Oliveira E, Henning E, Poitou-Bernert C, Oppert JM, Tounian P, Marchelli F, Alili R, Le Beyec J, Pépin D, Lacorte JM, Gottesdiener A, Bounds R, Sharma S, Folster C, Henderson B, O’Rahilly S, Stoner E, Gottesdiener K, Panaro BL, Cone RD, Clément K, Farooqi IS, Van der Ploeg LHT (2017) Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab 6:1321–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Falls BA, Zhang Y (2019) Insights into the allosteric mechanism of setmelanotide (RM-493) as a potent and first-in-class melanocortin-4 receptor (MC4R) agonist to treat rare genetic disorders of obesity through an in silico approach. ACS Chem Neurosci 10:1055–1065

    Article  CAS  PubMed  Google Scholar 

  130. Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M (2006) The MC4 receptor and control of appetite. Br J Pharmacol 149:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Millington GWM (2007) The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab 4:18

    Article  Google Scholar 

  132. Patel CA, Acharya SR (2019) Energy homeostasis and obesity: the therapeutic role of anorexigenic and orexigenic peptide. Int J Pept Res Ther 25:919–932

    Article  CAS  Google Scholar 

  133. Belgardt BF, Okamura T, Brüning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587:5305–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fani L, Bak S, Delhanty P, van Rossum EFC, van den Akker ELT (2014) The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int J Obes 38:163–169

    Article  CAS  Google Scholar 

  135. Jéquier E (2002) Leptin signaling, adiposity, and energy balance. Ann NY Acad Sci 967:379–388

    Article  PubMed  Google Scholar 

  136. Clément K, van den Akker E, Argente J, Bahm A, Chung WK, Connors H, De Waele K, Farooqi IS, Gonneau-Lejeune J, Gordon G, Kohlsdorf K, Poitou C, Puder L, Swain J, Stewart M, Yuan G, Wabitsch M, Kühnen P (2020) Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diab Endocrinol 8:960–970

    Article  Google Scholar 

  137. Markham A (2021) Setmelanotide: first approval. Drugs 81:397–403

    Article  CAS  PubMed  Google Scholar 

  138. Mullard A (2018) FDA drug approvals. Nat Rev Drug Discov 18(2019):85–89

    Google Scholar 

  139. Dash A, Chakraborty S, Pillai MR, Knapp FF Jr (2015) Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm 30:47–71

    CAS  PubMed  Google Scholar 

  140. Shastry M, Kayani I, Wild D, Caplin M, Visvikis D, Gacinovic S, Reubi JC, Bomanji JB (2010) Distribution pattern of 68Ga-DOTATATE in disease-free patients. Nucl Med Commun 31:1025–1032

    Article  PubMed  Google Scholar 

  141. Hennrich U, Benešová M (2020) [(68)Ga]Ga-DOTA-TOC: the first FDA-approved (68)Ga-radiopharmaceutical for PET imaging. Pharmaceuticals (Basel, Switzerland) 13

    Google Scholar 

  142. van Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM (2021) Phenylketonuria. Nat Rev Dis Primers 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  143. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, Mitchell J, Smith WE, Thompson BH, Berry SA (2014) Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 16:188–200

    Article  CAS  PubMed  Google Scholar 

  144. Evans S, Adam S, Adams S, Allen H, Ashmore C, Bailey S, Banks J, Churchill H, Cochrane B, Cook J, Dale C, Daly A, Dixon M, Dunlop C, Ellerton C, Emm A, Firman S, Ford S, French M, Gribben J, Grimsley A, Herlihy I, Hill M, Judd S, Lang K, Males J, McDonald J, McStravick N, Millington C, Newby C, Noble C, Pereira R, Pinto A, Robertson L, Robotham A, Ross K, Singleton K, Skeath R, Terry A, Van Wyk K, White F, White L, Wildgoose J, Woodall A, MacDonald A (2020) Uniformity of food protein interpretation amongst dietitians for patients with phenylketonuria (PKU): 2020 UK National Consensus Statements. Nutrients 12

    Google Scholar 

  145. Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A, Kakkis ED, Crombez EA, Grange DK, Harmatz P, Lipson MH, Milanowski A, Randolph LM, Vockley J, Whitley CB, Wolff JA, Bebchuk J, Christ-Schmidt H, Hennermann JB (2009) Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr 154:700–707

    Article  CAS  PubMed  Google Scholar 

  146. Mahan KC, Gandhi MA, Anand S (2019) Pegvaliase: a novel treatment option for adults with phenylketonuria. Curr Med Res Opin 35:647–651

    Article  CAS  PubMed  Google Scholar 

  147. Blau N (2013) Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert Opin Drug Metab Toxicol 9:1207–1218

    Article  CAS  PubMed  Google Scholar 

  148. Burton BK, Longo N, Vockley J, Grange DK, Harding CO, Decker C, Li M, Lau K, Rosen O, Larimore K, Thomas J (2020) Pegvaliase for the treatment of phenylketonuria: results of the phase 2 dose-finding studies with long-term follow-up. Mol Genet Metab 130:239–246

    Article  CAS  PubMed  Google Scholar 

  149. Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, Harding CO, Bilder DA, Weng HH, Olbertz J, Merilainen M, Jiang J, Larimore K, Gupta S, Gu Z, Northrup H (2018) Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab 124:27–38

    Article  CAS  PubMed  Google Scholar 

  150. Parenti G, Andria G (2011) Pompe disease: from new views on pathophysiology to innovative therapeutic strategies. Curr Pharm Biotechnol 12:902–915

    Article  CAS  PubMed  Google Scholar 

  151. van den Hout HM, Hop W, van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, Bakker HD, Loonen MC, de Klerk JB, Reuser AJ, van der Ploeg AT (2003) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112:332–340

    Article  PubMed  Google Scholar 

  152. Cupler EJ, Berger KI, Leshner RT, Wolfe GI, Han JJ, Barohn RJ, Kissel JT (2012) Consensus treatment recommendations for late-onset Pompe disease. Muscle Nerve 45:319–333

    Article  PubMed  Google Scholar 

  153. van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet (London, England) 372:1342–1353

    Article  PubMed  Google Scholar 

  154. Rossi M, Parenti G, Della Casa R, Romano A, Mansi G, Agovino T, Rosapepe F, Vosa C, Del Giudice E, Andria G (2007) Long-term enzyme replacement therapy for Pompe disease with recombinant human alpha-glucosidase derived from Chinese hamster ovary cells. J Child Neurol 22:565–573

    Article  PubMed  Google Scholar 

  155. Van den Hout JM, Kamphoven JH, Winkel LP, Arts WF, De Klerk JB, Loonen MC, Vulto AG, Cromme-Dijkhuis A, Weisglas-Kuperus N, Hop W, Van Hirtum H, Van Diggelen OP, Boer M, Kroos MA, Van Doorn PA, Van der Voort E, Sibbles B, Van Corven EJ, Brakenhoff JP, Van Hove J, Smeitink JA, de Jong G, Reuser AJ, Van der Ploeg AT (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113:e448–e457

    Article  PubMed  Google Scholar 

  156. Xu S, Lun Y, Frascella M, Garcia A, Soska R, Nair A, Ponery AS, Schilling A, Feng J, Tuske S, Valle MCD, Martina JA, Ralston E, Gotschall R, Valenzano KJ, Puertollano R, Do HV, Raben N, Khanna R (2019) Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 4

    Google Scholar 

  157. de Vries JM, Kuperus E, Hoogeveen-Westerveld M, Kroos MA, Wens SC, Stok M, van der Beek NA, Kruijshaar ME, Rizopoulos D, van Doorn PA, van der Ploeg AT, Pijnappel WW (2017) Pompe disease in adulthood: effects of antibody formation on enzyme replacement therapy. Genet Med 19:90–97

    Article  PubMed  Google Scholar 

  158. Wang Y, MacDonald RG, Thinakaran G, Kar S (2017) Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor in neurodegenerative diseases. Mol Neurobiol 54:2636–2658

    Article  CAS  PubMed  Google Scholar 

  159. Zhu Y, Li X, McVie-Wylie A, Jiang C, Thurberg BL, Raben N, Mattaliano RJ, Cheng SH (2005) Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J 389:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kushlaf H, Attarian S, Borges JL, Bouhour F, Chien Y-H, Choi Y-C, Clemens P, Day J, Diaz-Manera J, Erdem-Ozdamar S, Goker-Alpan O, Illarioshkin S, Kishnani P, Kostera-Pruszczyk A, Ladha S, Mozaffar T, Roberts M, Straub V, Toscano A, van der Ploeg A, Haack KA, Hug C, Huynh-Ba O, Zhou T, Johnson J, Dimachkie M, Schoser B (2021) Efficacy and safety results of the Avalglucosidase alfa phase 3 COMET trial in late-onset Pompe Disease patients (4195). Neurology 96:4195

    Google Scholar 

  161. Singh DB, Tripathi T (2020) Frontiers in protein structure, function, and dynamics. Springer Nature, Singapore

    Book  Google Scholar 

  162. Saudagar P, Tripathi T (2023) Advanced spectroscopic methods to study biomolecular structure and dynamics, 1st edn. Academic Press

    Google Scholar 

  163. Tripathi T, Dubey VK (2022) Advances in protein molecular and structural biology methods, 1st edn. Academic Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramesh, R., Ravichandran, R. (2023). Approved Protein Therapeutics and Their Biochemical Targets. In: Singh, D.B., Tripathi, T. (eds) Protein-based Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-19-8249-1_7

Download citation

Publish with us

Policies and ethics