Skip to main content

Subject Specific Modelling of Aortic Flows

  • Chapter
  • First Online:
Applied Complex Flow

Part of the book series: Emerging Trends in Mechatronics ((emerg. Trends in Mechatronics))

Abstract

Cardiovascular diseases (CVDs) are the principal cause of morbidity worldwide. According to the World Health Organisation (WHO), around 17.9 million deaths were reported in 2016 due to CVDs, representing 31% of the global death, while this number is expected to reach over 23.6 million by 2030. Arterial disease, stroke, transient ischaemic attack, and rheumatic heart disease are the most prevalent CVDs. British Heart Foundation (BHF) has reported that around 7.4 million people in the UK are living with CVDs, which imposes a £9 billion annual cost on the healthcare system. In recent years, advances in vascular biology, biomechanics, medical imaging, and computational techniques including Computational Fluid Dynamics (CFD) have provided the research community with a unique opportunity to simulate and analyse blood flow from a new angle and to develop new strategies for intervention. The increasing power-to-cost ratio of computers and the advent of methods for subject-specific modelling of cardiovascular flow have made CFD-based modelling sometimes even more reliable than methods based solely on in-vivo or in-vitro measurement. This chapter explains a workflow for subject-specific modelling of blood flow in the aorta as an exemplar of digitalisation in healthcare. The workflow comprises multi-modal clinical images, a multiscale numerical pipeline, and haemodynamic metrics. Subject-specific modelling primarily relies on clinical data, which is reachable through different clinical imaging modalities to get the anatomy and flow data of the Region of Interest (ROI). At the next stage, the computational pipeline should be set through appropriate boundary conditions. The latter requires a multiscale approach to couple the three-dimensional CFD model to zero/one-dimensional circuits. These circuits normally mimic upstream and downstream regions, which are not included in the three-dimensional CFD domain, however, they affect crucially and are to be considered for an accurate personalised medicine. Once the pipeline has been set, it can suggest complex blood flow behaviour because of different pathological conditions that might emerge throughout the vascular network. At this stage invoking accurate and reliable haemodynamic metrics can translate the simulated data into interpretable clinical output, which is the main goal of the workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. British Heart Foundation (2020) UK Factsheet. British Heart Foundation 1–21

    Google Scholar 

  2. Erbel R, Aboyans V, Boileau C et al (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J 35:2873–2926. https://doi.org/10.1093/eurheartj/ehu281

    Article  Google Scholar 

  3. Popieluszko P, Henry BM, Sanna B et al (2018) A systematic review and meta-analysis of variations in branching patterns of the adult aortic arch. J Vasc Surg 68:298-306.e10. https://doi.org/10.1016/j.jvs.2017.06.097

    Article  Google Scholar 

  4. Aboulhoda BE, Ahmed RK, Awad AS (2019) Clinically-relevant morphometric parameters and anatomical variations of the aortic arch branching pattern. Surg Radiol Anat 41:731–744. https://doi.org/10.1007/s00276-019-02215-w

    Article  Google Scholar 

  5. Nakamura M, Wada S, Mikami T et al (2003) Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms. Biomech Model Mechanobiol 2:59–72. https://doi.org/10.1007/s10237-003-0028-1

    Article  Google Scholar 

  6. Zhang LT, Gay M (2008) Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J Biomech 41:2515–2523. https://doi.org/10.1016/j.jbiomech.2008.05.012

    Article  Google Scholar 

  7. Schenkel T, Malve M, Reik M et al (2009) MRI-Based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng 37:503–515. https://doi.org/10.1007/s10439-008-9627-4

    Article  Google Scholar 

  8. Otani T, Al-Issa A, Pourmorteza A et al (2016) A computational framework for personalized blood flow analysis in the human left atrium. Ann Biomed Eng 44:3284–3294. https://doi.org/10.1007/s10439-016-1590-x

    Article  Google Scholar 

  9. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108. https://doi.org/10.1016/j.euje.2005.12.014

    Article  Google Scholar 

  10. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  11. Bommer W, Weinert L, Neumann A et al (1979) Determination of right atrial and right ventricular size by two-dimensional echocardiography. Circulation 60:91–100. https://doi.org/10.1161/01.CIR.60.1.91

    Article  Google Scholar 

  12. Engla NEW (2010) Is computed tomography safe? Perspective 363:1–3. https://doi.org/10.1056/NEJMp1002530

    Article  Google Scholar 

  13. Smith-Bindman R, Miglioretti DL, Johnson E et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health systems. JAMA, J Am Med Assoc 307:2400–2409. https://doi.org/10.1001/jama.2012.5960

    Article  Google Scholar 

  14. Dar AS, Padha D (2019) Medical image segmentation a review of recent techniques, advancements and a comprehensive comparison. Int J Comput Sci Eng 7:114–124. https://doi.org/10.26438/ijcse/v7i7.114124

  15. Vedula V, George R, Younes L, Mittal R (2015) Hemodynamics in the left atrium and its effect on ventricular flow patterns. J Biomech Eng 137:1–8. https://doi.org/10.1115/1.4031487

    Article  Google Scholar 

  16. Vedula V, Seo JH, Lardo AC, Mittal R (2016) Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theoret Comput Fluid Dyn 30:3–21. https://doi.org/10.1007/s00162-015-0349-6

    Article  Google Scholar 

  17. Koizumi R, Funamoto K, Hayase T et al (2015) Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J Biomech 48:472–478. https://doi.org/10.1016/j.jbiomech.2014.12.025

    Article  Google Scholar 

  18. van Ooij P, Markl M, Collins JD et al (2017) Aortic valve stenosis alters expression of regional aortic wall shear stress: new insights from a 4-dimensional flow magnetic resonance imaging study of 571 subjects. J Am Heart Assoc 6:1–14. https://doi.org/10.1161/JAHA.117.005959

    Article  Google Scholar 

  19. de Hoon NHLC, Jalba AC, Eisemann E, Vilanova A (2016) Temporal interpolation of 4D PC-MRI blood-flow measurements using bidirectional physics-based fluid simulation. Eurographics workshop on visual computing for biology and medicine. https://doi.org/10.2312/vcbm.20161272

  20. Quarteroni A, Manzoni A, Vergara C (2017) The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer 26:365–590. https://doi.org/10.1017/S0962492917000046

    Article  MATH  Google Scholar 

  21. Masci A, Alessandrini M, Forti D et al (2017) A patient-specific computational fluid dynamics model of the left atrium in atrial fibrillation: development and initial evaluation (Conference paper). 10263:392–400. https://doi.org/10.1007/978-3-319-59448-4

  22. Larsson D, Spuhler JH, Petersson S et al (2017) Patient-specific left ventricular flow simulations from transthoracic echocardiography: robustness evaluation and validation against ultrasound Doppler and magnetic resonance imaging. IEEE Trans Med Imaging 36:2261–2275. https://doi.org/10.1109/TMI.2017.2718218

    Article  Google Scholar 

  23. Moosavi MH, Fatouraee N, Katoozian H et al (2014) Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics. Comput Methods Biomech Biomed Engin 17:740–749

    Article  Google Scholar 

  24. Imanparast A, Fatouraee N, Sharif F (2016) The impact of valve simplifications on left ventricular hemodynamics in a three dimensional simulation based on in vivo MRI data. J Biomech 49:1482–1489. https://doi.org/10.1016/j.jbiomech.2016.03.021

    Article  Google Scholar 

  25. Slesnick TC (2017) Role of computational modeling in planning and executing interventional procedures for congenital heart disease. Can J Cardiol 33:1159–1170. https://doi.org/10.1016/j.cjca.2017.05.024

    Article  Google Scholar 

  26. Yiallourou TI, Kröger JR, Stergiopulos N et al (2012) Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0052284

  27. Bavo AM, Pouch AM, Degroote J et al (2017) Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: comparison of three clinical cases. J Biomech 50:144–150. https://doi.org/10.1016/j.jbiomech.2016.11.039

    Article  Google Scholar 

  28. Cibis M, Potters WV, Gijsen FJH et al (2014) Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR Biomed 27:826–834. https://doi.org/10.1002/nbm.3126

    Article  Google Scholar 

  29. Wolf I, Vetter M, Wegner I et al (2004) The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK. 16. https://doi.org/10.1117/12.535112

  30. Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of segment - freely available software for cardiovascular image analysis. BMC Med Imaging 10:1–13. https://doi.org/10.1186/1471-2342-10-1

    Article  Google Scholar 

  31. Morbiducci U, Ponzini R, Gallo D et al (2013) Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J Biomech 46:102–109. https://doi.org/10.1016/j.jbiomech.2012.10.012

    Article  Google Scholar 

  32. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563. https://doi.org/10.1113/jphysiol.1955.sp005276

    Article  Google Scholar 

  33. Youssefi P, Gomez A, Arthurs C et al (2018) Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta. J Biomech Eng 140:011002. https://doi.org/10.1115/1.4037857

    Article  Google Scholar 

  34. Armour CH, Guo B, Pirola S et al (2021) The influence of inlet velocity profile on predicted flow in type B aortic dissection. Biomech Model Mechanobiol 20:481–490. https://doi.org/10.1007/s10237-020-01395-4

    Article  Google Scholar 

  35. Liu J, Huang S, Wang X et al (2022) On inlet pressure boundary conditions for CT-based computation of fractional flow reserve: clinical measurement of aortic pressure. Comput Methods Biomech Biomed Eng 1–10. https://doi.org/10.1080/10255842.2022.2072172

  36. Deyranlou A, Miller CA, Revell A, Keshmiri A (2021) Effects of ageing on aortic circulation during atrial fibrillation; a numerical study on different aortic morphologies. Ann Biomed Eng 49:2196–2213. https://doi.org/10.1007/s10439-021-02744-9

    Article  Google Scholar 

  37. Deyranlou A, Naish JH, Miller CA et al (2020) Numerical study of atrial fibrillation effects on flow distribution in aortic circulation. Ann Biomed Eng 48. https://doi.org/10.1007/s10439-020-02448-6

  38. Simaan MA, Ferreira A, Chen S et al (2009) A dynamical state space representation and performance analysis of a feedback-controlled rotary left ventricular assist device. IEEE Trans Control Syst Technol 17:15–28. https://doi.org/10.1109/TCST.2008.912123

    Article  Google Scholar 

  39. Deyranlou A, Revell A, Keshmiri A (2021) A coupled flow-thermoregulation lumped model to investigate cardiac function. bioRxiv

    Google Scholar 

  40. Kim HJ, Vignon-Clementel IE, Coogan JS et al (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209. https://doi.org/10.1007/s10439-010-0083-6

    Article  Google Scholar 

  41. Scarsoglio S, Guala A, Camporeale C, Ridolfi L (2014) Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach. Med Biol Eng Compu 52:905–920. https://doi.org/10.1007/s11517-014-1192-4

    Article  Google Scholar 

  42. Stergiopulos N, Meister JJ, Westerhof N (1996) Determinants of stroke volume and systolic and diastolic aortic pressure. Am J Physiol 270:H2050–H2059. https://doi.org/10.1152/ajpheart.1996.270.6.H2050

    Article  Google Scholar 

  43. Murray BCD (1926) The physiological principle of minimum work applied to the angle of branching of arteries. 835–841

    Google Scholar 

  44. Williams HR, Trask RS, Weaver PM, Bond IP (2008) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5:55–65. https://doi.org/10.1098/rsif.2007.1022

    Article  Google Scholar 

  45. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial windkessel. Med Biol Eng Compu 47:131–141. https://doi.org/10.1007/s11517-008-0359-2

    Article  Google Scholar 

  46. Saber NR, Wood NB, Gosman AD et al (2003) Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann Biomed Eng 31:42–52. https://doi.org/10.1114/1.1533073

    Article  Google Scholar 

  47. Long Q, Merrifield R, Xu XY et al (2008) Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc Inst Mech Eng H 222:475–485. https://doi.org/10.1243/09544119JEIM310

    Article  Google Scholar 

  48. Mihalef V, Ionasec RI, Sharma P et al (2011) Patient-specific modelling of whole heart anatomy, dynamics and hemodynamics from 4D cardiac CT images. Interface Focus 1:286–296. https://doi.org/10.1098/rsfs.2010.0036

    Article  Google Scholar 

  49. Seo JH, Vedula V, Abraham T et al (2014) Effect of the mitral valve on diastolic flow patterns. Phys Fluids 26. https://doi.org/10.1063/1.4904094

  50. Bavo AM, Pouch AM, Degroote J et al (2016) Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging. Biomed Eng Online 15:1–15. https://doi.org/10.1186/s12938-016-0231-9

    Article  Google Scholar 

  51. Pouch AM, Wang H, Takabe M et al (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18:118–129. https://doi.org/10.1016/j.media.2013.10.001

    Article  Google Scholar 

  52. Škrinjar Ş, Bistoquet A (2009) Generation of myocardial wall surface meshes from segmented MRI. Int J Biomed Imaging 2009. https://doi.org/10.1155/2009/313517

  53. Gao M, Huang J, Zhang S et al (2011) 4D cardiac reconstruction using high resolution CT images. Fimh 153–160

    Google Scholar 

  54. Besbes A, Komodakis N, Paragios N (2009) Graph-based knowledge-driven discrete segmentation of the left ventricle. In: Proceedings of the 2009 IEEE international symposium on biomedical imaging: from nano to macro. ISBI 2009, pp 49–52. https://doi.org/10.1109/ISBI.2009.5192980

  55. Zhu Y, Papademetris X, Sinusas AJ, Duncan JS (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging 29:669–687. https://doi.org/10.1109/TMI.2009.2031063

    Article  Google Scholar 

  56. Khalafvand SS, Voorneveld JD, Muralidharan A et al (2018) Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. J Biomech 74:116–125. https://doi.org/10.1016/j.jbiomech.2018.04.030

    Article  Google Scholar 

  57. Khalafvand SS, Zhong L, Ng EYK (2016) Three-dimensional CFD/MRI modeling reveals that ventricular surgical restoration improves ventricular function by modifying intraventricular blood flow. 1044–1056. https://doi.org/10.1002/cnm

  58. Saber NR, Gosman AD, Wood NB et al (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29:275–283. https://doi.org/10.1114/1.1359452

    Article  Google Scholar 

  59. Khalafvand SS, Ng EYK, Zhong L, Hung TK (2012) Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study. Comput Biol Med 42:863–870. https://doi.org/10.1016/j.compbiomed.2012.06.010

    Article  Google Scholar 

  60. Canè F, Verhegghe B, De Beule M et al (2018) From 4D medical images (CT, MRI, and ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations. Biomed Res Int 2018. https://doi.org/10.1155/2018/7030718

  61. Bonfanti M, Balabani S, Alimohammadi M et al (2018) A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: comparison with fluid-structure interaction. Med Eng Phys 58:72–79. https://doi.org/10.1016/j.medengphy.2018.04.014

    Article  Google Scholar 

  62. Les AS, Shadden SC, Figueroa CA et al (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38:1288–1313. https://doi.org/10.1007/s10439-010-9949-x

    Article  Google Scholar 

  63. Valen-Sendstad K, Piccinelli M, Steinman DA (2014) High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech 47:3210–3216. https://doi.org/10.1016/j.jbiomech.2014.04.018

    Article  Google Scholar 

  64. Mikhal J, Geurts BJ (2014) Immersed boundary method for pulsatile transitional flow in realistic cerebral aneurysms. Comput Fluids 91:144–163. https://doi.org/10.1016/j.compfluid.2013.12.009

    Article  MATH  Google Scholar 

  65. Peacock J, Jones T, Tock C, Lutz R (1998) The onset of turbulence in physiological pulsatile flow in a straight tube. Exp Fluids 24:1–9. https://doi.org/10.1007/s003480050144

    Article  Google Scholar 

  66. Graf C, Barras JP (1978) Rheological properties of human blood plasma - a comparison of measurements with three different viscometers. Experientia 35:224–225

    Article  Google Scholar 

  67. Ma H, Ag T, Brady T et al (2002) A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am J Physiol Heart Circ Physiol 282:H1609–H1614. https://doi.org/10.1152/ajpheart.00712.2001

    Article  Google Scholar 

  68. Razavi A, Shirani E, Sadeghi MR (2011) Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 44:2021–2030. https://doi.org/10.1016/j.jbiomech.2011.04.023

    Article  Google Scholar 

  69. Yasuda K (1979) Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. PhD thesis

    Google Scholar 

  70. Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys Fluids 19. https://doi.org/10.1063/1.2772250

  71. Cagney N, Balabani S (2019) Influence of shear-thinning rheology on the mixing dynamics in Taylor-Couette flow. Chem Eng Technol 42:1680–1690. https://doi.org/10.1002/ceat.201900015

    Article  Google Scholar 

  72. Nicoud F, Chnafa C, Siguenza J et al (2018) Large-Eddy simulation of turbulence in cardiovascular flows 84:147–167. https://doi.org/10.1007/978-3-319-59548-1

    Article  Google Scholar 

  73. Bonfanti M, Franzetti G, Homer-Vanniasinkam S et al (2020) A combined in vivo, in vitro, in silico approach for patient-specific haemodynamic studies of aortic dissection. Ann Biomed Eng 48:2950–2964. https://doi.org/10.1007/s10439-020-02603-z

    Article  Google Scholar 

  74. Crosetto P, Reymond P, Deparis S et al (2011) Fluid–structure interaction simulation of aortic blood flow. Comput Fluids 43:46–57. https://doi.org/10.1016/j.compfluid.2010.11.032

    Article  Google Scholar 

  75. Pier B, Schmid PJ (2017) Linear and nonlinear dynamics of pulsatile channel flow. J Fluid Mech 815:435–480. https://doi.org/10.1017/jfm.2017.58

    Article  MATH  Google Scholar 

  76. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method

    Google Scholar 

  77. Zienkiewicz OC, Taylor RL, Nithiarasu P (2013) The finite element method for fluid dynamics, 7th edn

    Google Scholar 

  78. Pant S, Fabrèges B, Gerbeau J-F, Vignon-Clementel IE (2014) A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis. Int J Numer Methods Biomed Eng 30:1614–1648. https://doi.org/10.1002/cnm.2692

    Article  Google Scholar 

  79. Xiao N, Alastruey J, Alberto Figueroa C (2014) A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int J Numer Methods Biomed Eng 30:204–231. https://doi.org/10.1002/cnm.2598

    Article  Google Scholar 

  80. Arthurs CJ, Xiao N, Moireau P et al (2020) A flexible framework for sequential estimation of model parameters in computational hemodynamics. Springer International Publishing

    Google Scholar 

  81. Westerhof N, Stergiopulos N, Noble MIM, Westerhof BE (2019) Snapshots of hemodynamics. Springer International Publishing, Cham

    Book  Google Scholar 

  82. Chemla D, Hébert J-L, Aptecar E et al (2002) Empirical estimates of mean aortic pressure: advantages, drawbacks and implications for pressure redundancy. Clin Sci 103:7. https://doi.org/10.1042/cs20010300

  83. Reymond P, Merenda F, Perren F et al (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222. https://doi.org/10.1152/ajpheart.00037.2009

    Article  Google Scholar 

  84. Shaaban M, Duerinckx J (2000) Wall shear stress and early atherosclerosis: a review. AJR Am J Roentgenol 174:1657–1665. https://doi.org/10.2214/ajr.174.6.1741657

  85. Peiffer V, Sherwin SJ, Weinberg PD (2013) Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 99:242–250. https://doi.org/10.1093/cvr/cvt044

    Article  Google Scholar 

  86. Lei M, Kleinstreuer C, Truskey GA (1996) A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med Eng Phys 18:326–332. https://doi.org/10.1016/1350-4533(95)00045-3

    Article  Google Scholar 

  87. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5:293–302. https://doi.org/10.1161/01.ATV.5.3.293

    Article  Google Scholar 

  88. Himburg HA, Grzybowski DM, Hazel AL et al (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286:1916–1922. https://doi.org/10.1152/ajpheart.00897.2003

    Article  Google Scholar 

  89. Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347. https://doi.org/10.1115/1.3138567

    Article  Google Scholar 

  90. Di Achille P, Tellides G, Figueroa CA, Humphrey JD (2014) A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc R Soc A: Math Phys Eng Sci 470. https://doi.org/10.1098/rspa.2014.0163

  91. Pedrizzetti G, La Canna G, Alfieri O, Tonti G (2014) The vortex—an early predictor of cardiovascular outcome? Nat Rev Cardiol 11:545–553. https://doi.org/10.1038/nrcardio.2014.75

    Article  Google Scholar 

  92. Nguyen YN, Ismail M, Kabinejadian F et al (2018) Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: a review. Med Eng Phys 54:1–13. https://doi.org/10.1016/j.medengphy.2018.01.007

    Article  Google Scholar 

  93. Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows

    Google Scholar 

  94. Chnafa C, Mendez S, Nicoud F (2014) Image-based large-eddy simulation in a realistic left heart. Comput Fluids 94:173–187. https://doi.org/10.1016/j.compfluid.2014.01.030

    Article  MATH  Google Scholar 

  95. Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117–129. https://doi.org/10.1017/S0022112069000991

    Article  MATH  Google Scholar 

  96. Moffatt HK, Tsinober A (1992) Helicity in Laminar and turbulent flow. Annu Rev Fluid Mech 24:281–312. https://doi.org/10.1146/annurev.fl.24.010192.001433

    Article  MATH  Google Scholar 

  97. Meierhofer C, Schneider EP, Lyko C et al (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging 14:797–804. https://doi.org/10.1093/ehjci/jes273

    Article  Google Scholar 

  98. Pitcher A, Lamata P, Krittian SB et al (2013) Towards a comprehensive description of relative aortic pressure: insights from 4D flow CMR. J Cardiovasc Magn Reson 15:P243. https://doi.org/10.1186/1532-429x-15-s1-p243

    Article  Google Scholar 

  99. Ebel S, Kühn A, Aggarwal A et al (2022) Quantitative normal values of helical flow, flow jets and wall shear stress of healthy volunteers in the ascending aorta. Eur Radiol. https://doi.org/10.1007/s00330-022-08866-5

    Article  Google Scholar 

  100. Ebel S, Dufke J, Köhler B et al (2020) Automated quantitative extraction and analysis of 4D flow patterns in the ascending aorta: an intraindividual comparison at 1.5 T and 3 T. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-59826-2

    Article  Google Scholar 

  101. Catapano F, Pambianchi G, Cundari G et al (2020) 4D flow imaging of the thoracic aorta: is there an added clinical value? Cardiovasc Diagn Therapy 10:1068–1089. https://doi.org/10.21037/cdt-20-452

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Deyranlou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deyranlou, A., Revell, A., Keshmiri, A. (2023). Subject Specific Modelling of Aortic Flows. In: Azizi, A. (eds) Applied Complex Flow. Emerging Trends in Mechatronics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7746-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7746-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7745-9

  • Online ISBN: 978-981-19-7746-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics