Skip to main content

Advertisement

Log in

The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Cardiovascular (CV) disease impacts tens of millions of people annually and carries a massive global economic burden. Continued advances in medical imaging, hardware and computational efficiency are leading to an increased interest in the field of cardiovascular computational modelling to help combat the devastating impact of CV disease. This review article will focus on a computational modelling technique known as lumped parameter modelling (LPM). Due to its rapid computation time, ease of automation and relative simplicity, LPM holds the potential of aiding in the early diagnosis of CV disease, assisting clinicians in determining personalized and optimal treatments and offering a unique in-silico setting to study cardiac and circulatory diseases. In addition, it is one of the many tools that are needed in the eventual development of patient specific cardiovascular “digital twin” frameworks. This review focuses on how the personalization of cardiovascular lumped parameter models are beginning to impact the field of patient specific cardiovascular care. It presents an in-depth examination of the approaches used to develop current predictive LPM hemodynamic frameworks as well as their applications within the realm of cardiovascular disease. The roles of these models in higher order blood flow (1D/3D) simulations are also explored in addition to the different algorithms used to personalize the models. The article outlines the future directions of this field and the current challenges and opportunities related to the translation of this technology into clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source software Sim Vascular [177]; b Open and closed loop 0D boundary conditions applied to 3D models from within the Sim Vascular software [177]

Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and material

Not applicable.

Code Availability

Not applicable.

References

  1. Virani SS et al (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e139–e596

    Article  Google Scholar 

  2. World Health Organization (2017) Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  3. Public Health Agency of Canada (2009) Tracking heart disease and stroke in Canada

  4. American Heart Association (2017) Cardiovascular disease: a costly Burden for America, Projections Through 2035

  5. Wilkins, E. et al (2017) European Cardiovascular Disease Statistics 2017 edition

  6. Trayanova NA (2011) Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res 108:113–128

    Article  Google Scholar 

  7. Gray RA, Pathmanathan P (2018) Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J Cardiovasc Transl Res 11:80–88

    Article  Google Scholar 

  8. Niederer SA, Smith NP (2016) Using physiologically based models for clinical translation: predictive modelling, data interpretation or something in-between? J Physiol 594:6849–6863

    Article  Google Scholar 

  9. Niederer SA, Lumens J, Trayanova NA (2019) Computational models in cardiology. Nat Rev Cardiol 16:100–111

    Article  Google Scholar 

  10. Carli MFD, Geva T, Davidoff R (2016) The future of cardiovascular imaging. Circulation 133:2640–2661

    Article  Google Scholar 

  11. Bassingthwaighte J, Hunter P, Noble D (2009) The cardiac physiome: perspectives for the future. Exp Physiol 94:597–605

    Article  Google Scholar 

  12. Corral-Acero J et al (2020) The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J 41:4556–4564

    Article  Google Scholar 

  13. Kayvanpour E et al (2015) Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE 10:e0134869

    Article  Google Scholar 

  14. Richter Y, Edelman ER (2006) Cardiology is flow. Circulation 113:2679–2682

    Article  Google Scholar 

  15. Ben-Assa E et al (2019) Ventricular stroke work and vascular impedance refine the characterization of patients with aortic stenosis. Sci Transl Med 11:eaaw0181

    Article  Google Scholar 

  16. Keshavarz-Motamed Z et al (2016) Elimination of transcoarctation pressure gradients has no impact on left ventricular function or aortic shear stress after intervention in patients with mild coarctation. JACC Cardiovasc Interv 9:1953–1965

    Article  Google Scholar 

  17. Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann Biomed Eng 38:1188–1203

    Article  Google Scholar 

  18. Keshavarz-Motamed Z et al (2020) Mixed valvular disease following transcatheter aortic valve replacement: quantification and systematic differentiation using clinical measurements and image-based patient-specific in silico modeling. J Am Heart Assoc 9:e015063

    Article  Google Scholar 

  19. Sadeghi R, Khodaei S, Ganame J, Keshavarz-Motamed Z (2020) Towards non-invasive computational-mechanics and imaging-based diagnostic framework for personalized cardiology for coarctation. Sci Rep 10:9048

    Article  Google Scholar 

  20. Dweck MR, Boon NA, Newby DE (2012) Calcific aortic stenosis. J Am Coll Cardiol 60:1854–1863

    Article  Google Scholar 

  21. Antonini-Canterin F et al (2013) The ventricular-arterial coupling: from basic pathophysiology to clinical application in the echocardiography laboratory. J Cardiovasc Echogr 23:91–95

    Article  Google Scholar 

  22. Borlaug BA, Kass DA (2008) Ventricular-vascular interaction in heart failure. Heart Fail Clin 4:23–36

    Article  Google Scholar 

  23. Yin F (1987) Ventricular/vascular coupling: clinical, physiological, and engineering aspects. Springer, New York

    Book  Google Scholar 

  24. Ikonomidis I et al (2019) The role of ventricular–arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of cardiology working group on aorta & peripheral vascular diseases, European association of cardiovascular imaging, and heart failure association. Eur J Heart Fail 21:402–424

    Article  Google Scholar 

  25. Seemann F et al (2019) Noninvasive quantification of pressure-volume loops from brachial pressure and cardiovascular magnetic resonance. Circ Cardiovasc Imag 12:e008493

    Article  Google Scholar 

  26. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289:H501–H512

    Article  Google Scholar 

  27. Ky B et al (2013) Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol 62:1165–1172

    Article  Google Scholar 

  28. Keshavarz-Motamed Z et al (2014) Non-invasive determination of left ventricular workload in patients with aortic stenosis using magnetic resonance imaging and doppler echocardiography. PLoS ONE 9:e86793

    Article  Google Scholar 

  29. Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858

    Article  Google Scholar 

  30. Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728

    Article  Google Scholar 

  31. Villarraga-Gómez H, Lee C, Smith ST (2018) Dimensional metrology with X-ray CT: a comparison with CMM measurements on internal features and compliant structures. Precis Eng 51:291–307

    Article  Google Scholar 

  32. Watson SR, Dormer JD, Fei B (2018) Imaging technologies for cardiac fiber and heart failure: a review. Heart Fail Rev 23:273–289

    Article  Google Scholar 

  33. Rehman R, Yelamanchili VS, Makaryus AN (2020) Cardiac imaging. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island

  34. Maleki M, Esmaeilzadeh M (2012) The evolutionary development of echocardiography. Iran J Med Sci 37:222–232

    Google Scholar 

  35. Fleischmann D, Liang DH, Herfkens RJ (2008) Technical advances in cardiovascular imaging. Semin Thorac Cardiovasc Surg 20:333–339

    Article  Google Scholar 

  36. Burgstahler C, Schroeder S (2007) Magnetic resonance imaging versus computed tomography for the detection of coronary stenosis: do we really have to focus on ‘stenoses’? Heart 93:1322–1324

    Article  Google Scholar 

  37. Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediat Radiol 41:1353–1364

    Article  Google Scholar 

  38. Pearce MS et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet 380:499–505

    Article  Google Scholar 

  39. Rigsby CK et al (2018) Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently ‘Have-A-Heart’ campaign. Pediatr Radiol 48:5–20

    Article  Google Scholar 

  40. Power SP et al (2016) Computed tomography and patient risk: facts, perceptions and uncertainties. World J Radiol 8:902–915

    Article  Google Scholar 

  41. Omran H et al (2003) Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. The Lancet 361:1241–1246

    Article  Google Scholar 

  42. Keshavarz-Motamed Z (2020) A diagnostic, monitoring, and predictive tool for patients with complex valvular, vascular and ventricular diseases. Sci Rep 10:6905

    Article  Google Scholar 

  43. Mao B et al (2019) Lumped parameter model based surgical planning for CABG. Med Nov Technol Devices 2:100014

    Article  Google Scholar 

  44. Kim HJ et al (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209

    Article  Google Scholar 

  45. Tanné D, Kadem L, Rieu R, Pibarot P (2008) Hemodynamic impact of mitral prosthesis-patient mismatch on pulmonary hypertension: an in silico study. J Appl Physiol 295:1916–1926

    Article  Google Scholar 

  46. Keshavarz-Motamed Z, Edelman ER, Garcia J, Dahdah N, Kadem L (2015) The role of aortic compliance in determination of coarctation severity: lumped parameter modeling, in vitro study and clinical evaluation. J Biomech 48:4229–4237

    Article  Google Scholar 

  47. Abdi M, Karimi A, Navidbakhsh M, Jahromi GP, Hassani K (2014) A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system. Int J Numer Model 28:346–357

    Article  Google Scholar 

  48. Vassilevski Y, Olshanskii M, Simakov S, Kolobov A, Danilov A (2020) Personalized computational hemodynamics. Academic Press, Cambridge

    Google Scholar 

  49. Ottesen JT, Olufsen MS, Larsen JK (2004) Applied mathematical models in human physiology. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  50. Li JK-J (2000) The arterial circulation—physical principles and clinical applications. Humana Press Inc., New York

    Google Scholar 

  51. Westerhof N, Lankhaar J-W, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47:131–141

    Article  Google Scholar 

  52. Zhou S et al (2019) A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure. Biomed Eng OnLine 18:41

    Article  Google Scholar 

  53. Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2:121–143

    Article  Google Scholar 

  54. Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 276:H81–H88

    Google Scholar 

  55. Deswysen B, Charlier AA, Gevers M (1980) Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med Biol Eng Comput 18:153–166

    Article  Google Scholar 

  56. Goldwyn RM, Watt TB (1967) Arterial pressure pulse contour analysis via a mathematical model for the clinical quantifcation of human vascular properties. IEEE Trans Biomed Eng BME 14:11–17

    Article  Google Scholar 

  57. Rose WC, Shoukas AA (1993) Two-port analysis of systemic venous and arterial impedances. Am J Physiol 265:H1577–H1587

    Google Scholar 

  58. Frasch HF, Kresh JY, Noordergraaf A (1996) Two-port analysis of microcirculation: an extension of windkessel. Am J Physiol 270:H376–H385

    Google Scholar 

  59. Nestler F et al (2014) A hybrid mock circulation loop for a total artificial heart: hybrid mock circulation loop. Artif Organs 38:775–782

    Article  Google Scholar 

  60. Kim E, Capoccia M (2019) Synergistic model of cardiac function with a heart assist device. Bioengineering 7:1

    Article  MATH  Google Scholar 

  61. Molfetta AD et al (2017) Application of a lumped parameter model to study the feasibility of simultaneous implantation of a continuous flow ventricular assist device (VAD) and a pulsatile flow VAD in BIVAD patients. Artif Organs 41:242–252

    Article  Google Scholar 

  62. Benevento E, Djebbari A, Keshavarz-Motamed Z, Cecere R, Kadem L (2015) Hemodynamic changes following aortic valve bypass: a mathematical approach. PLoS ONE 10:e0123000

    Article  Google Scholar 

  63. Kresh JY, Brockman SK, Noordergraaf A (1990) Theoretical and experimental analysis of right ventricular bypass and univentricular circulatory support. IEEE Trans Biomed Eng 37:121–127

    Article  Google Scholar 

  64. Migliavacca F et al (2001) Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol 280:H2076–H2086

    Article  Google Scholar 

  65. Casas B et al (2017) Bridging the gap between measurements and modelling: a cardiovascular functional avatar. Sci Rep 7:6214

    Article  Google Scholar 

  66. Duanmu Z, Yin M, Fan X, Yang X, Luo X (2018) A patient-specific lumped-parameter model of coronary circulation. Sci Rep 8:874

    Article  Google Scholar 

  67. Arthurs CJ et al (2017) Reproducing patient-specific hemodynamics in the blalock-taussig circulation using a flexible multi-domain simulation framework: applications for optimal shunt design. Front Pediatr 5:78

    Article  Google Scholar 

  68. Vieira MS, Arthurs CJ, Hussain T, Razavi R, Figueroa CA (2018) Patient-specific modeling of right coronary circulation vulnerability post-liver transplant in Alagille’s syndrome. PLoS ONE 13:e0205829

    Article  Google Scholar 

  69. Shavik SM, Tossas-Betancourt C, Figueroa CA, Baek S, Lee LC (2020) Multiscale modeling framework of ventricular-arterial bi-directional interactions in the cardiopulmonary circulation. Front Physiol 11:1–13

    Article  Google Scholar 

  70. Sengupta D et al (2012) Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomech Model Mechanobiol 11:915–932

    Article  Google Scholar 

  71. Marone A et al (2019) Modeling of the hemodynamics in the feet of patients with peripheral artery disease. Biomed Opt Express 10:657–669

    Article  Google Scholar 

  72. Keshavarz-Motamed Z, Garcia J, Pibarot P, Larose E, Kadem L (2011) Modeling the impact of concomitant aortic stenosis and coarctation of the aorta on left ventricular workload. J Biomech 44:2817–2825

    Article  Google Scholar 

  73. Saitta S et al (2019) Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations. J Biomech 94:13–21

    Article  Google Scholar 

  74. van Bakel TMJ et al (2019) Cardiac remodelling following thoracic endovascular aortic repair for descending aortic aneurysms. Eur J Cardiothorac Surg 55:1061–1070

    Article  Google Scholar 

  75. Li B, Wang W, Mao B, Liu Y (2019) A method to personalize the lumped parameter model of coronary artery. Int J Comput Methods 16:1842004

    Article  MATH  Google Scholar 

  76. Itu L, et al (2012) A patient-specific reduced-order model for coronary circulation. In: 2012 9th IEEE international symposium on biomedical imaging, pp. 832–835

  77. Shi Y, Lawford P, Hose R (2011) Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng OnLine 10:33

    Article  Google Scholar 

  78. Jung E-O, Lee W-H (2006) Lumped parameter models of cardiovascular circulation in normal and arrhythmia cases. J Korean Math Soc 43:885–897

    Article  MathSciNet  MATH  Google Scholar 

  79. Holmes JW, Lumens J (2018) Clinical applications of patient-specific models: the case for a simple approach. J Cardiovasc Transl Res 11:71–79

    Article  Google Scholar 

  80. Mirramezani M, Shadden SC (2020) A distributed lumped parameter model of blood flow. Ann Biomed Eng 48:2870–2886

    Article  Google Scholar 

  81. de Canete JF (2013) Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Comput Biol Med 43:323–333

    Article  Google Scholar 

  82. Hassani K, Navidbakhsh M, Rostami M (2006) Simulation of the cardiovascular system using equivalent electronic system. Biomed Pap 150:105–112

    Article  Google Scholar 

  83. Vennin S et al (2017) Identifying hemodynamic determinants of pulse pressure: a combined numerical and physiological approach. Hypertension 70:1176–1182

    Article  Google Scholar 

  84. Pietrabissa R, Mantero S, Marotta T, Menicanti L (1996) A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phys 18:477–484

    Article  Google Scholar 

  85. Mynard JP, Penny DJ, Smolich JJ (2014) Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation. Am J Physiol Heart Circ Physiol 306:H517–H528

    Article  Google Scholar 

  86. Huang F, Ying S (2020) On-line parameter identification of the lumped arterial system model: a simulation study. PLoS ONE 15:e0236012

    Article  Google Scholar 

  87. Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2017) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138

    Article  MathSciNet  MATH  Google Scholar 

  88. Schiavazzi DE, Baretta A, Pennati G, Hsia T-Y, Marsden AL (2017) Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int J Numer Method Biomed Eng 33:1–59

    Article  Google Scholar 

  89. Arthurs CJ et al (2020) A flexible framework for sequential estimation of model parameters in computational hemodynamics. Adv Model Simul Eng Sci 7:48

    Article  Google Scholar 

  90. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    Article  Google Scholar 

  91. Sherwin SJ, Formaggia L, Peiró J, Franke V (2003) Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int J Numer Methods Fluids 43:673–700

    Article  MathSciNet  MATH  Google Scholar 

  92. Wan J et al (2002) A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput Methods Biomech Biomed Eng 5:195–206

    Article  Google Scholar 

  93. Taylor CA et al (1999) Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 4:231–247

    Article  Google Scholar 

  94. Xie X, Zheng M, Wen D, Li Y, Xie S (2018) A new CFD based non-invasive method for functional diagnosis of coronary stenosis. Biomed Eng OnLine 17:36

    Article  Google Scholar 

  95. Mirramezani M, Diamond SL, Litt HI, Shadden SC (2019) Reduced order models for transstenotic pressure drop in the coronary arteries. J Biomech Eng 141:031005

    Article  Google Scholar 

  96. American Heart Association (2017) What is Cardiovascular Disease? https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease

  97. Zipes DP et al (2019) Braunwald’s heart disease: a textbook of cardiovascular medicine, Eleventh. Elsevier, Philadelphia

    Google Scholar 

  98. Klabunde RE (2012) Cardiovascular physiology concepts, 2nd edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  99. Pijls NHJ et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708

    Article  Google Scholar 

  100. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J Am Coll Cardiol 61:2233–2241

    Article  Google Scholar 

  101. Ricotta JJ et al (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46:1059–1068

    Article  Google Scholar 

  102. Itu LM, Sharma P, Suciu C (2017) Patient-specific hemodynamic computations: application to personalized diagnosis of cardiovascular pathologies. Springer, Cham

    Book  Google Scholar 

  103. Lamata P et al (2014) Images as drivers of progress in cardiac computational modelling. Prog Biophys Mol Biol 115:198–212

    Article  Google Scholar 

  104. Tang H et al (2020) Lumped-parameter circuit platform for simulating typical cases of pulmonary hypertensions from point of hemodynamics. J Cardiovasc Transl Res 13:826–852

    Article  Google Scholar 

  105. Warriner DR et al (2014) Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops. PLoS ONE 9:e114153

    Article  Google Scholar 

  106. Garcia D et al (2009) Impairment of coronary flow reserve in aortic stenosis. J Appl Physiol 106:113–121

    Article  Google Scholar 

  107. Pant S et al (2018) A lumped parameter model to study atrioventricular valve regurgitation in stage 1 and changes across stage 2 surgery in single ventricle patients. IEEE Trans Biomed Eng 65:2450–2458

    Article  Google Scholar 

  108. Quarteroni A, Manzoni A, Vergara C (2017) The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer 26:365–590

    Article  MathSciNet  MATH  Google Scholar 

  109. Frolov SV et al (2017) A lumped parameter model of cardiovascular system with pulsating heart for diagnostic studies. J Mech Med Biol 17:1750056

    Article  Google Scholar 

  110. Sankaran S et al (2012) Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng 40:2228–2242

    Article  Google Scholar 

  111. Ryu J, Hu X, Shadden SC (2015) A coupled lumped-parameter and distributed network model for cerebral pulse-wave hemodynamics. J Biomech Eng 137:101009

    Article  Google Scholar 

  112. Itu L, et al (2014) Model based non-invasive estimation of PV loop from echocardiography. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 6774–6777

  113. Zhu S, Luo L, Yang B, Li X, Wang X (2017) Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations. Comput Assist Surg 22:221–231

    Article  Google Scholar 

  114. Casas B et al (2018) Non-invasive assessment of systolic and diastolic cardiac function during rest and stress conditions using an integrated image-modeling approach. Front Physiol 9:1515

    Article  Google Scholar 

  115. Broomé M, Maksuti E, Bjällmark A, Frenckner B, Janerot-Sjöberg B (2013) Closed-loop real-time simulation model of hemodynamics and oxygen transport in the cardiovascular system. Biomed Eng OnLine 12:69

    Article  Google Scholar 

  116. Mynard JP, Davidson MR, Penny DJ, Smolich JJ (2012) A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int J Numer Methods Biomed Eng 28:626–641

    Article  MathSciNet  Google Scholar 

  117. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    Article  Google Scholar 

  118. Segers P et al (2003) Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Eng Math 47:185–199

    Article  MathSciNet  MATH  Google Scholar 

  119. Hideaki S, Chen-Huan C, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans. Circulation 94:2497–2506

    Article  Google Scholar 

  120. Stergiopulos N, Meister JJ, Westerhof N (1996) Determinants of stroke volume and systolic and diastolic aortic pressure. Am J Physiol Heart Circ Physiol 270:H2050–H2059

    Article  Google Scholar 

  121. Moss RL, Razumova M, Fitzsimons DP (2004) Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease. Circ Res 94:1290–1300

    Article  Google Scholar 

  122. Gleason WL, Braunwald E (1962) Studies on the first derivative of the ventricular pressure pulse in man. J Clin Invest 41:80–91

    Article  Google Scholar 

  123. Dell’Italia LJ, Walsh RA (1988) Application of a time varying elastance model to right ventricular performance in man. Cardiovasc Res 22:864–874

    Article  Google Scholar 

  124. Shimizu S et al (2018) Lumped parameter model for hemodynamic simulation of congenital heart diseases. J Physiol Sci 68:103–111

    Article  Google Scholar 

  125. Pironet A et al (2013) Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS ONE 8:e65146

    Article  Google Scholar 

  126. Heldt T, Shim EB, Kamm RD, Mark RG (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol 92:1239–1254

    Article  Google Scholar 

  127. Burkhoff D, de Tombe PP, Hunter WC, Kass DA (1991) Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. Am J Physiol-Heart Circ Physiol 260:H569–H578

    Article  Google Scholar 

  128. Claessens TE et al (2006) Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold? Am J Physiol Heart Circ Physiol 290:H1474–H1483

    Article  Google Scholar 

  129. Pironet A et al (2013) A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship. Biomed Eng OnLine 12:8

    Article  Google Scholar 

  130. Borlaug BA, Kass DA (2009) Invasive hemodynamic assessment in heart failure. Heart Fail Clin 5:217–228

    Article  Google Scholar 

  131. Capoccia M, Marconi S, Singh SA, Pisanelli DM, De Lazzari C (2018) Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis. Biomed Eng OnLine 17:52

    Article  Google Scholar 

  132. Bellhouse BJ, Bergel DH (1972) The fluid mechanics of heart valves. In: Cardiovascular fluid dynamics. Elsevier, Philadelphia, pp 261–285. ISBN: 978-0-12-089901-2

  133. Garcia D, Pibarot P, Durand L-G (2005) Analytical modeling of the instantaneous pressure gradient across the aortic valve. J Biomech 38:1303–1311

    Article  Google Scholar 

  134. Baumgartner H, Stefenelli T, Niederberger J, Schima H, Maurer G (1999) “Overestimation” of catheter gradients by doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J Am Coll Cardiol 33:1655–1661

    Article  Google Scholar 

  135. Korakianitis T, Shi Y (2006) Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J Biomech 39:1964–1982

    Article  Google Scholar 

  136. Shi Y, Yeo TJH, Zhao Y (2004) Numerical simulation of a systemic flow test rig. ASAIO J 50:54–64

    Article  Google Scholar 

  137. Werner J, Bohringer D, Hexamer M (2002) Simulation and prediction of cardiotherapeutical phenomena from a pulsatile model coupled to the Guyton circulatory model. IEEE Trans Biomed Eng 49:430–439

    Article  Google Scholar 

  138. Korakianitis T, Shi Y (2006) A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys 28:613–628

    Article  Google Scholar 

  139. Pennati G, Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) A mathematical model of circulation in the presence of the bidirectional cavopulmonary anastomosis in children with a univentricular heart. Med Eng Phys 19:223–234

    Article  Google Scholar 

  140. Sun Y, Sjoberg BJ, Ask P, Loyd D, Wranne B (1995) Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. Am J Physiol Heart Circ Physiol 268:H476–H489

    Article  Google Scholar 

  141. Trenhago PR, Fernandes LG, Müller LO, Blanco PJ, Feijóo RA (2016) An integrated mathematical model of the cardiovascular and respiratory systems. Int J Numer Methods Biomed Eng 32:e02736

    Article  MathSciNet  Google Scholar 

  142. Simakov SS (2019) Lumped parameter heart model with valve dynamics. Russ J Numer Anal Math Model 34:289–300

    Article  MathSciNet  MATH  Google Scholar 

  143. Maganti K, Rigolin VH, Sarano ME, Bonow RO (2010) Valvular heart disease: diagnosis and management. Mayo Clin Pro 85:483–500

    Article  Google Scholar 

  144. Waite L, Fine J, Veres G, Szabó G (2009) A lumped-parameter model of mitral valve blood flow for assessment of diastolic left ventricular filling. IFMBE Proc 25:1984–1985

    Article  Google Scholar 

  145. Garcia D et al (2005) A ventricular-vascular coupling model in presence of aortic stenosis. Am J Physiol Heart Circ Physiol 288:H1874–H1884

    Article  Google Scholar 

  146. Fiore GB et al (2002) Hydraulic functional characterisation of aortic mechanical heart valve prostheses through lumped-parameter modelling. J Biomech 35:1427–1432

    Article  Google Scholar 

  147. Scarsoglio S, Camporeale C, Guala A, Ridolfi L (2015) Fluid dynamics of heart valves during atrial fibrillation: a lumped parameter-based approach. Comput Methods Biomech Biomed Eng 19:1060–1068

    Article  Google Scholar 

  148. Pappano AJ, Gil Wier W (2019) Cardiovascular physiology, 11th edn. Elsevier, Philadelphia

    Google Scholar 

  149. Ojha M (1994) Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ Res 74:1227–1231

    Article  Google Scholar 

  150. Zarins CK, Ku DN (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5:413–420

    Article  Google Scholar 

  151. Yushkevich PA et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  Google Scholar 

  152. Kikinis R, Pieper SD, Vosburgh KG (2014) 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging and image-guided therapy. Springer, New York, pp 277–289

    Chapter  Google Scholar 

  153. Materialise Mimics. Materialise https://www.materialise.com/en/medical/mimics-innovation-suite/mimics

  154. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222

    Article  Google Scholar 

  155. Agoshkov V, Quarteroni A, Rozza G (2006) A mathematical approach in the design of arterial bypass using unsteady stokes equations. J Sci Comput 28:139–165

    Article  MathSciNet  MATH  Google Scholar 

  156. Sankaran S, Marsden AL (2010) The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys Fluids 22:121902

    Article  Google Scholar 

  157. Dur O et al (2011) Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc Eng Technol 2:35–47

    Article  Google Scholar 

  158. Hajati O, Zarrabi K, Karimi R, Hajati A (2012) CFD simulation of hemodynamics in sequential and individual coronary bypass grafts based on multislice CT scan datasets. In: 2012 annual international conference of the IEEE engineering in medicine and biology society, pp 641–644

  159. Schrauwen JTC et al (2015) Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries. Ann Biomed Eng 43:59–67

    Article  Google Scholar 

  160. Taylor CA, Figueroa CA (2009) Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11:109–134

    Article  Google Scholar 

  161. HeartFlow (2016) https://www.accessdata.fda.gov/cdrh_docs/pdf15/K152733.pdf

  162. Maasrani M, et al (2010) Simulations of fluxes in diseased coronary network using an electrical model. In: The XIX international conference on electrical machines—ICEM 2010, pp 1–6

  163. Geven MCF, Bohte VN, Aarnoudse WH (2004) A physiologically representative in vitro model of the coronary circulation. Physio Meas 25:891–904

    Article  Google Scholar 

  164. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co, Boston

    MATH  Google Scholar 

  165. Hassani K, Navidbakhsh M, Rostami M (2007) Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system. Biomed Eng OnLine 6:22

    Article  Google Scholar 

  166. Ursino M (1998) Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol Heart Circ Physiol 275:H1733–H1747

    Article  Google Scholar 

  167. Kim HJ, Jansen KE, Taylor CA (2010) Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow. Ann Biomed Eng 38:2314–2330

    Article  Google Scholar 

  168. Liang F, Liu H (2005) A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int J Ser C 48:484–493

    Article  Google Scholar 

  169. Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annu Rev Physiol 34:13–44

    Article  Google Scholar 

  170. Montani J, Van Vliet BN (2009) Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol 94:382–388

    Article  Google Scholar 

  171. Morris PD et al (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28

    Article  Google Scholar 

  172. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  MATH  Google Scholar 

  173. Randles A, Frakes DH, Leopold JA (2017) Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease. Trends Biotechnol 35:1049–1061

    Article  Google Scholar 

  174. Pandey R, Kumar M, Majdoubi J, Rahimi-Gorji M, Srivastav VK (2020) A review study on blood in human coronary artery: numerical approach. Comput Methods Programs Biomed 187:105243

    Article  Google Scholar 

  175. Marsden AL (2014) Optimization in cardiovascular modeling. Annu Rev Fluid Mech 46:519–546

    Article  MathSciNet  MATH  Google Scholar 

  176. Zhong L et al (2018) Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol 9:742

    Article  Google Scholar 

  177. Updegrove A et al (2017) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45:525–541

    Article  Google Scholar 

  178. Khodaei S et al (2021) Personalized intervention cardiology with transcatheter aortic valve replacement made possible with a non-invasive monitoring and diagnostic framework. Nat Sci Rep 11:1–28 (in-press)

    Google Scholar 

  179. Sacre JW, Jennings GLR, Kingwell BA (2014) Exercise and dietary influences on arterial stiffness in cardiometabolic disease. Hypertension 63:888–893

    Article  Google Scholar 

  180. Pant S, Fabrèges B, Gerbeau J-F, Vignon-Clementel IE (2014) A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis. Int J Numer Methods Biomed Eng 30:1614–1648

    Article  Google Scholar 

  181. Zhang X, Wu D, Miao F, Liu H, Li Y (2020) Personalized hemodynamic modeling of the human cardiovascular system: a reduced-order computing model. IEEE Trans Biomed Eng 67:2754–2764

    Article  Google Scholar 

  182. Mukkamala R, Cohen RJ (2001) A forward model-based validation of cardiovascular system identification. Am J Physiol Heart Circ Physiol 281:H2714–H2730

    Article  Google Scholar 

  183. Nakamura G, Potthast R (2015) Inverse modeling an introduction to the theory and methods of inverse problems and data assimilation. IOP Publishing, Bristol

    Book  MATH  Google Scholar 

  184. Moré JJ (1978) The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis proceedings of the Biennial Conference Held at Dundee. Springer, Berlin, pp 105–116

    Google Scholar 

  185. Spilker RL, Taylor CA (2010) Tuning multidomain hemodynamic simulations to match physiological measurements. Ann Biomed Eng 38:2635–2648

    Article  Google Scholar 

  186. Ismail M, Wall WA, Gee MW (2013) Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models. J Comput Phys 244:113–130

    Article  MathSciNet  MATH  Google Scholar 

  187. Huang H, Yang M, Zang W, Shunjie Wu, Pang Y (2011) In vitro identification of four-element windkessel models based on iterated unscented kalman filter. IEEE Trans Biomed Eng 58:2672–2680

    Article  Google Scholar 

  188. Quarteroni A (2001) Modeling the Cardiovascular System - A Mathematical Adventure- Part I. SIAM News 34(5):1–3

    Google Scholar 

  189. Quarteroni A (2001) Modeling the cardiovascular system—a mathematical adventure- part II. SIAM News 34(6):1–3

    Google Scholar 

  190. Athanasiou L, Nezami FR, Edelman ER (2019) Computational cardiology. IEEE J Biomed Health Inform 23:4–11

    Article  Google Scholar 

  191. Mansi T, Passerini T, Comaniciu D (2020) Artificial intelligence for computational modeling of the heart. Elsevier, Philadelphia

    Google Scholar 

  192. Lopez-Jimenez F et al (2020) Artificial intelligence in cardiology: present and future. Mayo Clin Proc 95:1015–1039

    Article  Google Scholar 

  193. Feiger B et al (2020) Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks. Sci Rep 10:9508

    Article  Google Scholar 

  194. Bikia V et al (2020) Noninvasive estimation of aortic hemodynamics and cardiac contractility using machine learning. Sci Rep 10:15015

    Article  Google Scholar 

  195. Witzenburg CM, Holmes JWA (2017) Comparison of phenomenologic growth laws for myocardial hypertrophy. J Elast 129:257–281

    Article  MathSciNet  MATH  Google Scholar 

  196. Maksuti E et al (2019) Cardiac remodeling in aortic and mitral valve disease: a simulation study with clinical validation. J Appl Physiol 126:1377–1389

    Article  Google Scholar 

  197. Lopez-Perez A, Sebastian R, Ferrero JM (2015) Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng OnLine 14:35

    Article  Google Scholar 

  198. Amann J, Blasimme A, Vayena E, Frey D, Madai VI (2020) Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 20:310

    Article  Google Scholar 

  199. Hosanagar K (2019) A human’s guide to machine intelligence: how algorithms are shaping our lives and how we can stay in control. Viking, New York

    Google Scholar 

  200. Winslow RL, Trayanova N, Geman D, Miller MI (2012) Computational medicine: translating models to clinical care. Sci Transl Med 4:15811

    Article  Google Scholar 

  201. Anvari S, Nambiar S, Pang J, Maftoon N (2021) Computational models and simulations of cancer metastasis. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-021-09554-1

  202. Motamed P, Maftoon N (2021) A systematic approach for developing mechanistic models for realistic simulation of cancer cell motion and deformation. Sci Rep. https://doi.org/10.1038/s41598-021-00905-3

  203. Keshavarz-Motamed Z, Garcia J, Gaillard E, Maftoon N, Di Labbio G, Cloutier G, Kadem L (2014) Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Exp Fluids 55:1696

  204. Keshavarz-Motamed Z, Garcia J, Maftoon N, Bedard E, Chetaille P, Kadem L (2012) A new approach for the evaluation of the severity of coarctation of the aorta using Doppler velocity index and effective orifice area: in vitro validation and clinical implications. J Biomech 45:1239–1245

  205. Shen J, Faruqi AH, Jiang Y, Maftoon N (2021) Mathematical reconstruction of patient-specific vascular networks based on clinical images and global optimization. IEEE Access 9:20648–20661. https://doi.org/10.1109/ACCESS.2021.3052501

  206. Baiocchi M, Barsoum, Khodaei S, de la Torre Hernandez JM, Valentino SE, Dunford EC, MacDonald MJ, Keshavarz-Motamed Z (2021) Effects of choice of medical imaging modalities on a non-invasive diagnostic and monitoring computational framework for patients with complex valvular, vascular, and ventricular diseases who undergo transcatheter aortic valve replacement. Front Bioeng Biotechnol 9:643453. https://doi.org/10.3389/fbioe.2021.643453

  207. Asaadi M, Mawad A, Djebbari, Keshavarz-Motamed Z, Dahdah N, Kadem L (2021) On left ventricle stroke work efficiency in children with moderate aortic valve regurgitation or moderate aortic valve stenosis. Pediatr Cardiol. https://doi.org/10.1007/s00246-021-02690-2

  208. Ben-Assa E, Brown J, Keshavarz-Motamed Z, de la Torre Hernandez JM, Leiden B, Olender M, Kallel F, Palacios IF, Inglessis I, Shah PB, Elmariah S, Leon MB, Edelman ER (2019) Ventricular stroke work and vascular impedance refine the characterization of patients with aortic stenosis. Science Trans Med 11(509):eaaw0181

Download references

Funding

This work was supported by NSERC Discovery Grant (RGPIN-2017-05349) and NSERC CRD Grant (CRDPJ 537352 – 18). NSERC (https://www.nserc-crsng.gc.ca/index_eng.asp) as the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LG: Literature analysis and investigation, original draft manuscript writing and visualization, SK: Reviewing and editing, ZK-M: Conception, design of literature classification, critical revision and final approval of the manuscript.

Corresponding author

Correspondence to Zahra Keshavarz-Motamed.

Ethics declarations

Conflict of interest

No authors report a conflict of interest and there are no relationships with industry for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garber, L., Khodaei, S. & Keshavarz-Motamed, Z. The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations. Arch Computat Methods Eng 29, 2977–3000 (2022). https://doi.org/10.1007/s11831-021-09685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09685-5

Navigation