Skip to main content

Application of Nanotechnology in Plant Growth and Diseases Management: Tool for Sustainable Agriculture

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

Abstract

In this era of climate change, on the one hand the global agriculture system is facing various unpredictable challenges and on the other hand the graph of the world’s population is continuously increasing, which will be expected to reach up to 8.5 billion by 2030. This will pose serious problems with food security around the globe. In order to achieve this rising food demand, the use of progressive technology such as nanotechnology may help as a promising tool for boosting crop production and for revolution in the agricultural system. Nanotechnology helps to improve food quality and safety, facilitates absorption of nanoscale nutrients from the soil, and causes reduction in agricultural inputs. Nanotechnology has the potential to enhance crop productivity and improve soil quality. Conventionally, pesticides and other chemical treatments are very common in agriculture but these applications are found to be negatively affecting the environment as only a small amount of pesticide reaches the target while remaining pesticides release into the environment and cause environmental pollution, as well as through the food chain it reaches to humans and affect their health. Moreover, it negatively affects the non-target species and also develops resistance in insects, pathogens, and weeds. Nanotechnological applications in agriculture are considered as promising solution for sustainable agriculture practices. Nanotechnology provides new agrochemical agents and target-specific mechanisms for control of pests without damaging the environment. In addition, nanosensors can be used for the treatment and detection of diseases. Presently, more research is advancing toward the applications and implementation of nanotechnological approaches in agriculture sector. The present chapter will highlight the scope and application of nanoparticles for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari T, Kundu S, Meena V, Rao AS (2014) Utilization of nano rock phosphate by maize (Zea mays L.) crop in a vertisol of Central India. J Agric Sci Technol 4(5):384–394

    CAS  Google Scholar 

  • Afsharinejad A, Davy A, Jennings B, Brennan C (2015) Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J 3(1):59–69

    Article  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Aziz HMA, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):17

    Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad N (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  Google Scholar 

  • Balavandy SK, Shameli K, Biak DRBA, Abidin ZZ (2014) Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem Cent J 8(1):1–10

    Article  Google Scholar 

  • Bali R, Harris AT (2010) Biogenic synthesis of Au nanoparticles using vascular plants. Ind Eng Chem Res 49(24):12762–12772

    Article  CAS  Google Scholar 

  • Behera A, Mallick P, Mohapatra SS (2020) Nanocoatings for anticorrosion: an introduction. In: Corrosion protection at the nanoscale. Elsevier, London, pp 227–243

    Chapter  Google Scholar 

  • Benoit R, Wilkinson KJ, SauvĂ© S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7(1):1–7

    Article  Google Scholar 

  • Benzon HRL, Rubenecia MRU, Ultra VU Jr, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. Int J Agron Agric Res 7(1):105–117

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27(8):085103

    Article  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594

    Article  CAS  Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. In: International conference on postharvest pest and disease management in exporting horticultural crops-PPDM2012 973, pp 231–237

    Google Scholar 

  • Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 6:677

    Article  CAS  Google Scholar 

  • Das CK, Srivastava G, Dubey A, Roy M, Jain S, Sethy NK, Saxena M, Harke S, Sarkar S, Misra K, Singh SK (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1(1):1–12

    Article  Google Scholar 

  • Devatha CP, Thalla AK (2018) Green synthesis of nanomaterials. In: Synthesis of inorganic nanomaterials. Woodhead Publishing, London, pp 169–184

    Chapter  Google Scholar 

  • Dobrucka R, DĹ‚ugaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523

    Article  CAS  Google Scholar 

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Sustainable agriculture reviews. Springer, Cham, pp 307–330

    Chapter  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elizabath A, Babychan M, Mathew AM, Syriac GM (2019) Application of nanotechnology in agriculture. Int J Pure Appl Biosci 7(2):131–139

    Article  Google Scholar 

  • El-Saadony MT, El-Hack A, Mohamed E, Taha AE, Fouda MM, Ajarem JS, Maodaa N, S., Allam, A.A. and Elshaer, N. (2020) Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nano 10(3):587

    CAS  Google Scholar 

  • Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidkey NM (2018) Synthesis and investigations on tellurium myconanoparticles. Biotechnol Rep 18:e00247

    Article  Google Scholar 

  • Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345:329–336

    Article  CAS  Google Scholar 

  • FAO (2017) The future of food and agriculture–Trends and challenges. Annual Report

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Ganeshkumar R, Sopiha KV, Wu P, Cheah CW, Zhao R (2016) Ferroelectric KNbO3 nanofibers: synthesis, characterization and their application as a humidity nanosensor. Nanotechnology 27(39):395607

    Article  Google Scholar 

  • Ghorbanpour M, Fahimirad S (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Medicinal plants and environmental challenges. Springer, Cham, pp 247–257

    Chapter  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies. Pesticides Toxic Aspects 8:187

    Google Scholar 

  • Hassan SED, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC J Biol Inorg Chem 24(3):377–393

    Article  CAS  Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. New pesticides and soil sensors. Academic, New York, pp 193–225

    Book  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65(4):551–560

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iran J Sci Technol 43(2):387–395

    Article  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int 2013:639725

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  Google Scholar 

  • Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. In: Nanoscience and plant-soil systems. Springer, Cham, pp 405–427

    Chapter  Google Scholar 

  • Kheiri A, Jorf SM, Malihipour A, Saremi H, Nikkhah M (2017) Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Int J Biol Macromol 102:526–538

    Article  CAS  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5(1):135

    Google Scholar 

  • Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60

    Article  CAS  Google Scholar 

  • Kuchibhatla SV, Karakoti AS, Baer DR, Samudrala S, Engelhard MH, Amonette JE, Thevuthasan S, Seal S (2012) Influence of aging and environment on nanoparticle chemistry: implication to confinement effects in nanoceria. J Phys Chem C 116(26):14108–14114

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2015) Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology. Sci Adv Mater 7(6):1143–1148

    Article  CAS  Google Scholar 

  • Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA, Strano MS (2017) A nanobionic light-emitting plant. Nano Lett 17(12):7951–7961

    Article  CAS  Google Scholar 

  • Lade BD, Shanware AS (2020) Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles. In: Smart nanosystems for biomedicine, optoelectronics and catalysis. IntechOpen, London

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  Google Scholar 

  • Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88(11):1971–1977

    CAS  Google Scholar 

  • Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ (2020) Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine 15:275

    Article  CAS  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858

    Article  CAS  Google Scholar 

  • Lu JW, Li FB, Guo T, Lin LW, Hou MF, Liu TX (2006) TiO2 photocatalytic antifungal technique for crops diseases control. J Environ Sci 18(2):397–401

    CAS  Google Scholar 

  • Luo QY, Lin Y, Li Y, Xiong LH, Cui R, Xie ZX, Pang DW (2014) Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. Small 10(4):699–704

    Article  CAS  Google Scholar 

  • Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse. NanoBiotechnology 11(6):702–708

    Article  Google Scholar 

  • Makeeva DR, Kryukova EM, Konovalova EE (2014) Tourism as preferred direction in the strategy of substitution of industry branches in mono-territories of Russian Federation. World Appl Sci J 30(1):176–178

    Google Scholar 

  • Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2019) Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ 670:292–299

    Article  CAS  Google Scholar 

  • Mali SC, Raj S, Trivedi R (2019) Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem Biophys Rep 20:100699

    Google Scholar 

  • Mali SC, Raj S, Trivedi R (2020) Nanotechnology a novel approach to enhance crop productivity. Biochem Biophys Rep 24:100821

    Google Scholar 

  • Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. Int Sch Res Notices 2013:327435

    Google Scholar 

  • Manivasagan P, Alam MS, Kang KH, Kwak M, Kim SK (2015) Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst Eng 38(6):1167–1177

    Article  CAS  Google Scholar 

  • Manzanares-Palenzuela CL, MartĂ­n-Fernández B, LĂłpez MSP, LĂłpez-Ruiz B (2015) Electrochemical genosensors as innovative tools for detection of genetically modified organisms. TrAC Trends Anal Chem 66:19–31

    Article  CAS  Google Scholar 

  • McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016

    Article  CAS  Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):1–10

    Google Scholar 

  • Mikkelsen R (2018) Nanofertilizer and nanotechnology: a quick look. Better Crops Plant Food 102(3):18–19

    Article  Google Scholar 

  • Mishra V, Arya A, Chundawat TS (2020) High catalytic activity of Pd nanoparticles synthesized from green alga Chlorella vulgaris in Buchwald-Hartwig synthesis of N-aryl piperazines. Curr Organocatal 7(1):23–33

    Article  Google Scholar 

  • Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M, Mohamad R (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22(6):872

    Article  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2016) Integration between chitosan and Zataria multiflora or Cinnamomum zeylanicum essential oil for controlling Phytophthora drechsleri, the causal agent of cucumber fruit rot. LWT Food Sci Technol 65:349–356

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Pettibone JM, Grassian VH (2012) Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46(13):7001–7010

    Article  CAS  Google Scholar 

  • Mwaanga P (2018) Risks, uncertainties, and ethics of nanotechnology in agriculture. New Vis Plant Sci 22:3

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Najafi Disfani M, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63(6):817–826

    Article  CAS  Google Scholar 

  • Odularu AT (2018) Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl 2018:9354708

    Article  Google Scholar 

  • Omara AED, Elsakhawy T, Alshaal T, El-Ramady H, Kovács Z, Fári M (2019) Nanoparticles: a novel approach for sustainable agro-productivity. Environ Biodivers Soil Secur 3:29–62

    Google Scholar 

  • Oriakhi CO (2004) Commercialization of nanotechnologies. Doctoral dissertation. Massachusetts Institute of Technology

    Google Scholar 

  • Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A 136:1175–1180

    Article  CAS  Google Scholar 

  • Pandey BD (2012) Synthesis of zinc-based nanomaterials: a biological perspective. IET Nanobiotechnol 6(4):144–148

    Article  CAS  Google Scholar 

  • Pandey G (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299–307

    Article  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D, Fraser PJ, Kim KR, Krummel PB, Langenfelds RL, Van Ommen TD, Steele LP (2012) Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci 5(4):261–265

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:417305

    Article  Google Scholar 

  • Perlatti B, de Souza Bergo PL, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Insecticides-development of safer and more effective technologies. IntechOpen, London

    Google Scholar 

  • Pragya R, Nandini P, Bhavesh P (2012) Nanomaterials: a future concern. Int J Res Chem Environ 2(2):1–7

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109(37):E2451–E2456

    Article  CAS  Google Scholar 

  • Purohit R, Mittal A, Dalela S, Warudkar V, Purohit K, Purohit S (2017) Social, environmental and ethical impacts of nanotechnology. Mater Today Proc 4(4):5461–5467

    Article  Google Scholar 

  • Qu Y, You S, Zhang X, Pei X, Shen W, Li Z, Li S, Zhang Z (2018) Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst Eng 41(3):359–367

    Article  CAS  Google Scholar 

  • Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B: Biointerfaces 79(1):235–240

    Article  CAS  Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:132424

    Article  Google Scholar 

  • Rai M, Ingle AP, Birla S, Yadav A, Santos CAD (2016) Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol 42(5):696–719

    CAS  Google Scholar 

  • Rakhimol KR, Thomas S, Kalarikkal N, Jayachandran K (2021) Nanotechnology in controlled-release fertilizers. In: Controlled release fertilizers for sustainable agriculture. Academic, New York, pp 169–181

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    Article  CAS  Google Scholar 

  • Razavi R, Molaei R, Moradi M, Tajik H, Ezati P, Yordshahi AS (2020) Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Appl Nanosci 10(2):465–476

    Article  CAS  Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017) Agricultural nanotechnology: concepts, benefits, and risks. In: Nanotechnology. Springer, Singapore, pp 1–17

    Google Scholar 

  • Sarkar J, Mollick MMR, Chattopadhyay D, Acharya K (2017) An eco-friendly route of Îł-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-Îł-Fe2O3 nanocomposites. Bioprocess Biosyst Eng 40(3):351–359

    Article  CAS  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Article  CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Soc Agric Food 15(2):22–44

    Google Scholar 

  • Shah MA, Wani SH, Khan AA (2016) Nanotechnology and insecticidal formulations. J Food Bioeng Nanopro 1:285–310

    Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    Article  CAS  Google Scholar 

  • Sharma P, Pant S, Poonia P, Kumari S, Dave V, Sharma S (2018) Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: an ecologically sound approach. J Inorg Organomet Polym Mater 28(6):2463–2472

    Article  CAS  Google Scholar 

  • Shenashen M, Derbalah A, Hamza A, Mohamed A, El Safty S (2017) Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporum. Pest Manag Sci 73(6):1121–1126

    Article  CAS  Google Scholar 

  • Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A 79(1):254–262

    Article  CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365–377

    Article  CAS  Google Scholar 

  • Sindhu RK, Chitkara M, Sandhu IS (2021) Nanotechnology: principles and applications. CRC Press, New York

    Book  Google Scholar 

  • Singh R, Singh R, Singh D, Mani JK, Karwasra SS, Beniwal MS (2010) Effect of weather parameters on karnal bunt disease in wheat in Karnal region of Haryana. J Agrometeorol 12(1):99–101

    Article  CAS  Google Scholar 

  • Singh AK, Chaudhary BK, Kumar V (2020) Potential use of nanotechnology in agriculture. Int J Eng Sci Adv 6(1):27–31

    Google Scholar 

  • Skladanowski M, Wypij M, Laskowski D, GoliĹ„ska P, Dahm H, Rai M (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28(1):59–79

    Article  CAS  Google Scholar 

  • Sneha K, Sathishkumar M, Kim S, Yun YS (2010) Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem 45(9):1450–1458

    Article  CAS  Google Scholar 

  • Soleimanpour MR, Hosseini SJF, Mirdamadi SM, Sarafrazi A (2011) Challenges in commercialization of nanotechnology in agriculture sector of Iran. Ann Biol Res 2(4):68–75

    Google Scholar 

  • Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2(1):112–121

    CAS  Google Scholar 

  • Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R (2019) Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manag 231:457–466

    Article  CAS  Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomed Nanotechnol 2(7):5

    Google Scholar 

  • Sriramulu M, Sumathi S (2018) Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Adv Nat Sci Nanosci Nanotechnol 9(2):025018

    Article  Google Scholar 

  • Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D (2014) Seed treatment with iron pyrite (FeS 2) nanoparticles increases the production of spinach. RSC Adv 4(102):58495–58504

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Article  CAS  Google Scholar 

  • Tegart G (2001) Nanotechnology: the technology for the 21st century. Center for Technology Foresight, Bangkok

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  Google Scholar 

  • Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46(4):360–375

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  • Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci 4(3):033001

    CAS  Google Scholar 

  • Umar H, Kavaz D, Rizaner N (2019) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine 14:87

    Article  CAS  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Ur Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

    Article  CAS  Google Scholar 

  • Vanti GL, Nargund VB, Vanarchi R, Kurjogi M, Mulla SI, Tubaki S, Patil RR (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33(1):e4630

    Article  Google Scholar 

  • Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, Yu JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227(7):1–13

    Article  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Article  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88

    Article  CAS  Google Scholar 

  • Yugandhar P, Vasavi T, Rao YJ, Devi PUM, Narasimha G, Savithramma N (2018) Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J Clust Sci 29(4):743–755

    Article  CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2020) Novel slow release nanocomposite fertilizers. In: Nanotechnology and the environment. IntechOpen, London

    Google Scholar 

  • Zhan G, Huang J, Lin L, Lin W, Emmanuel K, Li Q (2011) Synthesis of gold nanoparticles by Cacumen Platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism. J Nanopart Res 13(10):4957–4968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawana Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humbal, A., Pathak, B. (2023). Application of Nanotechnology in Plant Growth and Diseases Management: Tool for Sustainable Agriculture. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_6

Download citation

Publish with us

Policies and ethics