Skip to main content

Commercial Astaxanthin Production from Green Alga Haematococcus pluvialis

  • Chapter
  • First Online:
Food Microbiology Based Entrepreneurship

Abstract

Astaxanthin is a secondary carotenoid that is widely used as a dietary supplement and feed in aquaculture industries. Among other commercially significant microalgae, Haematococcus pluvialis is considered as the best non-genetically modified microalgae for accumulation of natural astaxanthin. Natural astaxanthin extracted from H. pluvialis has a significantly better antioxidant potential than artificially manufactured astaxanthin. Astaxanthin promotes the health conditions of humans by reducing oxidative stress and free radicals. Natural astaxanthin is recognized as one of the high-value-added products of the future, with noticeable advantages and a great growth in demand. The present chapter describes the mass cultivation of H. pluvialis for high-end production of natural astaxanthin. Cultivation of H. pluvialis in photobioreactors and open raceway ponds via two-stage and one-stage methodologies are summarized in detail. Production processes including harvesting, cell rupturing, downstream processing, and biorefinery models were reviewed. Total cost and profit involved in the mass production of H. pluvialis were elaborated by lab-scale production, small-scale production, and large-scale production in detail. Thus, the chapter can serve as a baseline for entrepreneurship opportunities in the commercial production of astaxanthin from Haematococcus pluvialis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aflalo, C., Meshulam, Y., Zarka, A., & Boussiba, S. (2007). On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and Bioengineering, 98(1), 300–305.

    Article  CAS  Google Scholar 

  • Ambati, R. R., Phang, S.-M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs, 12(1), 128–152.

    Article  Google Scholar 

  • Aoi, W., Naito, Y., Takanami, Y., Ishii, T., Kawai, Y., Akagiri, S., Kato, Y., Osawa, T., & Yoshikawa, T. (2008). Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochemical and Biophysical Research Communications, 366(4), 892–897.

    Article  CAS  Google Scholar 

  • Azizi, M., Moteshafi, H., & Hashemi, M. (2020). Distinctive nutrient designs using statistical approach coupled with light feeding strategy to improve the Haematococcus pluvialis growth performance and astaxanthin accumulation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.122594. 300122594-S0960852419318243 122594.

  • Bischoff, H. C. (1963). Some soil algae from enchanted rock and related algal species. Phycological Studies IV. University of Texas Publ. No. 6318, 6318, 1–95.

    Google Scholar 

  • Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333–340.

    Article  Google Scholar 

  • Bompolakis, S., Giannouli, D., Koumentakos, A., & Lazopoulou, D. (2019). Business plan of small-scale biofuel plant in the region of Attica, Greece. https://doi.org/10.13140/RG.2.2.35032.55049

  • Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70(1–3), 313–321.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25(3), 743–756.

    Article  CAS  Google Scholar 

  • Boussiba, S., Bing, W., Yuan, J.-P., Zarka, A., & Chen, F. (1999). Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnology Letters, 21(7), 601–604.

    Article  CAS  Google Scholar 

  • Capelli, G. C., & Cysewski, G. (2013). The Worlds’ best kept health secret natural astaxanthin. Cyanotech Corporation.

    Google Scholar 

  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D.-J., & Chang, J.-S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  • Choi, Y. Y., Hong, M. E., Jin, E. S., Woo, H. M., & Sim, S. J. (2018). Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 249, 519–526. https://doi.org/10.1016/j.biortech.2017.10.060. S0960852417318898.

    Article  CAS  Google Scholar 

  • de Mooij, T., de Vries, G., Latsos, C., Wijffels, R. H., & Janssen, M. (2016). Impact of light color on photobioreactor productivity. Algal Research, 15, 32–42.

    Article  Google Scholar 

  • Dębowski, M., Zieliński, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies. Renewable and Sustainable Energy Reviews, 27, 596–604.

    Article  Google Scholar 

  • del Río, E., Acién, F. G., García-Malea, M. C., Rivas, J., Molina-Grima, E., & Guerrero, M. G. (2005). Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnology and Bioengineering, 91(7), 808–815.

    Article  Google Scholar 

  • del Río, E., Acién, F. G., García-Malea, M. C., Rivas, J., Molina-Grima, E., & Guerrero, M. G. (2008). Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnology and Bioengineering, 100(2), 397–402.

    Article  Google Scholar 

  • Domınguez-Bocanegra, A. R., Legarreta, I. G., Jeronimo, F. M., & Campocosio, A. T. (2004). Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 92(2), 209–214.

    Article  Google Scholar 

  • Fábregas, J., Dominguez, A., Regueiro, M., Maseda, A., & Otero, A. (2000). Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology, 53(5), 530–535.

    Article  Google Scholar 

  • Fan, L., Vonshak, A., & Boussiba, S. (1994). Effect of temperature and irradiance on growth of Haematococcus pluvialis (chlorophyceae) 1. Journal of Phycology, 30(5), 829–833.

    Article  Google Scholar 

  • Fazal, T., Mushtaq, A., Rehman, F., Khan, A. U., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 82, 3107–3126.

    Article  CAS  Google Scholar 

  • García-Malea, M. C., Acién, F. G., del Río, E., Fernández, J. M., Cerón, M. C., Guerrero, M. G., & Molina-Grima, E. (2009). Production of astaxanthin by Haematococcus pluvialis: Taking the one-step system outdoors. Biotechnology and Bioengineering, 102(2), 651–657.

    Article  Google Scholar 

  • Global Market Insights (2018). Astaxanthin market size by application (Dietary supplement, personal care, pharmaceuticals, food & beverages, animal feed {Aquaculture, livestock, pets}), by source (Synthetic, natural), industry analysis report, regional outlook (U.S., Canada, Germany, UK, France, Italy, Norway, Denmark, Turkey, Ireland, Spain, China, Japan, India, South Korea, Australia, Malaysia, Thailand, Indonesia, Vietnam, Brazil, Mexico, Argentina, Chile, Ecuador, Saudi Arabia, UAE, South Africa), Growth potential, price trends, competitive market share & forecast, 2018–2024. Available online: https://www.gminsights.com/industryanalysis/astaxanthin-market.

  • Grand View Research (2017). Astaxanthin market size worth $2.57 billion by 2025 | CAGR: 18.9%. Available online: https://www.grandviewresearch.com/pressrelease/astaxanthin-market.

  • Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W., & Flynn, K. J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7(46), 703–726.

    Article  CAS  Google Scholar 

  • Grewe, C. B., & Griehl, C. (2012). The carotenoid astaxanthin from Haematococcus pluvialis. In Microalgal biotechnology: Integration and economy (pp. 129–144). De Gruyter.

    Chapter  Google Scholar 

  • Grima, E. M., Belarbi, E.-H., Fernández, F. G. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20(7–8), 491–515.

    Article  Google Scholar 

  • Hagen, C., Siegmund, S., & Braune, W. (2002). Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37(2), 217–226.

    Article  Google Scholar 

  • Han, D., Li, Y., & Hu, Q. (2013). Biology and commercial aspects of Haematococcus pluvialis (pp. 388–405). Wiley.

    Google Scholar 

  • Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. Journal of Fermentation and Bioengineering, 82(2), 113–118. https://doi.org/10.1016/0922-338X(96)85031-8. 0922338X96850318.

    Article  CAS  Google Scholar 

  • Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H., & Tanaka, H. (2001). Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 13(5), 395–402.

    Article  CAS  Google Scholar 

  • Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3(3), 318–329.

    Article  Google Scholar 

  • Hubo, X., Jie, W., Zhaopeng, W., Yongmao, G., Zhipeng, W., & Zhengqiang, Z. (2017). Discrimination of brownheart of Korla pear using vibration frequency spectrum technique. International Journal of Agricultural and Biological Engineering, 10(2), 259–266.

    Google Scholar 

  • Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., Machesky, S. C., Granados, J., Beal, C., & Greene, C. H. (2015). Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research, 10, 249–265.

    Article  Google Scholar 

  • Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4), 573–608.

    Article  Google Scholar 

  • Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 69(3), 443–449.

    Article  CAS  Google Scholar 

  • Kang, C. D., Han, S. J., Choi, S. P., & Sim, S. J. (2010). Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation. Bioprocess and Biosystems Engineering, 33(1), 133–139.

    Article  CAS  Google Scholar 

  • Khoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., & Show, P. L. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606.

    Article  CAS  Google Scholar 

  • Kiperstok, A. C., Sebestyén, P., Podola, B., & Melkonian, M. (2017). Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Research, 21, 213–222.

    Article  Google Scholar 

  • Kobayashi, M., Kakizono, T., & Nagai, S. (1993). Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology, 59(3), 867–873.

    Article  CAS  Google Scholar 

  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.

    Article  Google Scholar 

  • Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.

    Article  CAS  Google Scholar 

  • Leach, M., Hamilton, L. C., Olbrich, A., Wray, G. M., & Thiemermann, C. (1998). Effects of inhibitors of the activity of cyclo-oxygenase-2 on the hypotension and multiple organ dysfunction caused by endotoxin: A comparison with dexamethasone. British Journal of Pharmacology, 124(3), 586–592.

    Article  CAS  Google Scholar 

  • Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.

    Article  CAS  Google Scholar 

  • Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29(6), 568–574.

    Article  CAS  Google Scholar 

  • Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., Xiao, C., Agathos, S. N., Wang, G., & Li, J. (2020). Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 2020, 107602.

    Article  Google Scholar 

  • Lorenz, R. T. (1999). A technical review of Haematococcus algae. NatuRose Technical Bulletin, 60, 1–12.

    Google Scholar 

  • Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.

    Article  CAS  Google Scholar 

  • Market Research Future (2021). Global astaxanthin market size by source (synthetic, natural), by application (Dietary supplement, personal care, pharmaceuticals, food and beverages), by geographic scope and forecast. Available online: https://www.verifiedmarketresearch.com/product/astaxanthin-market/.

  • Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants, 8(8), 279.

    Article  CAS  Google Scholar 

  • Mota, G. C. P., Moraes, L. B. S., Oliveira, C. Y. B., Oliveira, D. W. S., Abreu, J. L., Dantas, D. M. M., & Gálvez, A. O. (2021). Astaxanthin from Haematococcus pluvialis: Processes, applications, and market. Preparative Biochemistry & Biotechnology, 2021, 1–12.

    Google Scholar 

  • Nagendraprabhu, P., & Sudhandiran, G. (2011). Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Investigational New Drugs, 29(2), 207–224.

    Article  CAS  Google Scholar 

  • Nakagawa, K., Kiko, T., Miyazawa, T., Burdeos, G. C., Kimura, F., Satoh, A., & Miyazawa, T. (2011). Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. British Journal of Nutrition, 105(11), 1563–1571.

    Article  CAS  Google Scholar 

  • Nguyen, K. D. (2013). Astaxanthin: A comparative case of synthetic vs. natural production. University of Tennessee.

    Google Scholar 

  • Niizawa, I., Espinaco, B. Y., Leonardi, J. R., Heinrich, J. M., & Sihufe, G. A. (2018). Enhancement of astaxanthin production from Haematococcus pluvialis under autotrophic growth conditions by a sequential stress strategy. Preparative Biochemistry and Biotechnology, 48(6), 528–534.

    Article  CAS  Google Scholar 

  • Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12(3), 499–506.

    Article  CAS  Google Scholar 

  • Oliveira, C. Y. B., Nader, C., Silva, M. F. O., Fracalossi, D. M., Gálvez, A. O., Lopes, R. G., & Derner, R. B. (2020). Integrated use of microalgal biomass of Choricystis minor var. minor: A promising model for production of biodiesel and aquafeeds. Biomass Conversion and Biorefinery, 2020, 1–9.

    Google Scholar 

  • Olivieri, G., Salatino, P., & Marzocchella, A. (2014). Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications. Journal of Chemical Technology & Biotechnology, 89(2), 178–195.

    Article  CAS  Google Scholar 

  • Onorato, C., & Rösch, C. (2020). Comparative life cycle assessment of astaxanthin production with Haematococcus pluvialis in different photobioreactor technologies. Algal Research. https://doi.org/10.1016/j.algal.2020.102005. 50102005-S221192642030254X 102005.

  • Onumaegbu, C., Mooney, J., Alaswad, A., & Olabi, A. G. (2018). Pre-treatment methods for production of biofuel from microalgae biomass. Renewable and Sustainable Energy Reviews, 93, 16–26.

    Article  CAS  Google Scholar 

  • Orosa, M., Franqueira, D., Cid, A., & Abalde, J. (2005). Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresource Technology, 96(3), 373–378.

    Article  CAS  Google Scholar 

  • Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A., & Sulaiman, A. Z. (2021). A Review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules, 11(2), 256.

    Article  CAS  Google Scholar 

  • Panis, G., & Carreon, J. R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.

    Article  Google Scholar 

  • Park, J. C., Choi, S. P., Hong, M.-E., & Sim, S. J. (2014). Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess and Biosystems Engineering, 37(10), 2039–2047.

    Article  CAS  Google Scholar 

  • Pawar, S. B. (2016). Process engineering aspects of vertical column photobioreactors for mass production of microalgae. ChemBioEng Reviews, 3(3), 101–115.

    Article  Google Scholar 

  • Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S. N., McHugh, E., Walsh, D., Murray, P., Moane, S., Feijoo, G., & Moreira, M. T. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: From lab to pilot scale. Journal of Cleaner Production, 64, 332–344.

    Article  Google Scholar 

  • Prieto, C. V. G., Ramos, F. D., Estrada, V., Villar, M. A., & Diaz, M. S. (2017). Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB. Energy, 139, 1159–1172.

    Article  Google Scholar 

  • Razon, L. F., & Tan, R. R. (2011). Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Applied Energy, 88(10), 3507–3514.

    Article  CAS  Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1–61.

    Article  Google Scholar 

  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.

    Article  CAS  Google Scholar 

  • Saha, S. K., McHugh, E., Hayes, J., Moane, S., Walsh, D., & Murray, P. (2013). Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresource Technology, 128, 118–124.

    Article  CAS  Google Scholar 

  • Sarada, R., Bhattacharya, S., & Ravishankar, G. A. (2002). Optimization of culture conditions for growth of the green alga Haematococcus pluvialis. World Journal of Microbiology and Biotechnology, 18(6), 517–521.

    Article  CAS  Google Scholar 

  • Sarada, R., Tripathi, U., & Ravishankar, G. A. (2002). Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochemistry, 37(6), 623–627.

    Article  CAS  Google Scholar 

  • Shah, M., Mahfuzur, R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science, 7, 531.

    Article  Google Scholar 

  • Su, Y., Wang, J., Shi, M., Niu, X., Yu, X., Gao, L., Zhang, X., Chen, L., & Zhang, W. (2014). Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresource Technology, 170, 522–529.

    Article  CAS  Google Scholar 

  • Sun, H., Guan, B., Kong, Q., Geng, Z., & Wang, N. (2016). Repeated cultivation: Non-cell disruption extraction of astaxanthin for Haematococcus pluvialis. Scientific Reports, 6(1), 1–12.

    Google Scholar 

  • Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474–487.

    Article  Google Scholar 

  • Ting, H., Haifeng, L., Shanshan, M., Zhang, Y., Zhidan, L., & Na, D. (2017). Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. International Journal of Agricultural and Biological Engineering, 10(1), 1–29.

    Google Scholar 

  • Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J., & Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresource Technology, 167, 276–283.

    Article  CAS  Google Scholar 

  • Wan, M., Zhang, Z., Wang, J., Huang, J., Fan, J., Yu, A., Wang, W., & Li, Y. (2015). Sequential heterotrophy–dilution–photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresource Technology, 198, 557–563.

    Article  CAS  Google Scholar 

  • Wang, F., Gao, B., Wu, M., Huang, L., & Zhang, C. (2019). A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Research, 101466. https://doi.org/10.1016/j.algal.2019.101466. 39101466-S2211926418307768.

  • Yamashita, E. (2005). The effects of a dietary supplement containing astaxanthin on skin condition. Food Style, 9(9), 72.

    CAS  Google Scholar 

  • Yoo, J. J., Choi, S. P., Kim, B. W., & Sim, S. J. (2012). Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis. Bioprocess and Biosystems Engineering, 35(1), 309–315.

    Article  CAS  Google Scholar 

  • Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J., & Li, Y. G. (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture, 295(3–4), 275–281.

    Article  CAS  Google Scholar 

  • Zhang, W., Wang, J., Wang, J., & Liu, T. (2014). Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresource Technology, 158, 329–335.

    Article  CAS  Google Scholar 

  • Zuanon, J. A. S., Salaro, A. L., & Furuya, W. M. (2011). Produção e nutrição de peixes ornamentais. Revista Brasileira de Zootecnia, 40(1), 165–174.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. R. Praveen Kumar, Assistant Professor, Department of Science and Environment, Roskilde University, Denmark, for providing the microscopic images. Additionally, we sincerely acknowledge the financial support from the DBT (Govt. of India), for the establishment of National Repository for Microalgae and Cyanobacteria—Freshwater NRMC-F (Phase II) (BT/PR29901/PBD26/694/2018), DST PURSE- Scheme DST/SR/PURSE Phase 2/16(C) and School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fayaazuddin, T., Prakash, P., Shakena Fathima, T., Dhanasekaran, D. (2023). Commercial Astaxanthin Production from Green Alga Haematococcus pluvialis. In: Amaresan, N., Dharumadurai, D., Babalola, O.O. (eds) Food Microbiology Based Entrepreneurship. Springer, Singapore. https://doi.org/10.1007/978-981-19-5041-4_15

Download citation

Publish with us

Policies and ethics