Skip to main content

The Role of Genetic, Genomic, and Breeding Approaches in the Fight Against Fungal Diseases in Wheat

  • Chapter
  • First Online:
Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management

Abstract

Wheat is a major, widely cultivated staple cereal food resource, representing almost 200 million ha of agricultural areas. It is regarded as the second most important cultivated crop, equally consumed in different forms. In recent years, enormous progress in genomic advancement in fungal disease resistance has partially solved the problem throughout the globe. The landraces, conventional varieties, and wild species (primary, secondary, and tertiary gene pools) have been explored in search of resistant genes. Wheat’s cosmopolitan distribution and changes in global climatic conditions exposed the crop to various strains of fungal pathogens. Conventional and advanced breeding techniques provide a platform for identification and introgression of potential genes that help to combat the fungal disease exploits. Furthermore, the use of new genomic techniques such as marker-assisted breeding, RNAi editing, genome editing, speed breeding tilling, and so on empowers the harnessing of new rust-resistant genes. The chapter highlights the importance of potential donors of fungal resistance alleles in breeding strategies and new emerging techniques. Moreover, translational approaches are also essential to achieve long-term durable resistance along with the variable resistance nature of fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLPs:

Amplified fragment length polymorphisms

BAC libraries:

Bacterial artificial chromosome libraries

CAPS:

Cleaved amplified-polymorphic sequence

CASS:

Chromosome arm-specific sequencing

DArT markers:

Diversity arrays markers

DHs:

Doubled haploids production

dsRNA:

Double-stranded RNA

FST:

Flow sorting technology

GM crops:

Genetically modified crops

GS:

Genomic determination

GWAS:

Genome-wide association studies

HIGS:

Host-induced gene silencing

MABS:

Marker-assisted backcrossing

MAS:

Marker-assisted selection

MNs:

Meganucleases

NGS:

Next-generation sequencing technologies

PM resistance genes:

Powdery mildew resistance genes

PtCNB:

Calcineurin B

PtCYC1:

Cyclophilin

PtMAPK1:

Mitogen-activated protein kinase 1

QTL:

Quantitative trait locus

R gene:

Resistance genes

RFLPs:

Restriction fragment length polymorphism

RNAi:

RNA interference

S genes:

Susceptibility genes

SIGS:

Spray-induced gene silencing

SNPs:

Single nucleotide polymorphism

SSD:

Single-seed-descent

SSRs:

Simple sequence repeats

STS:

Sequence targeted site

TILLING:

Targeting induced local lesions in genomes

WGSA:

Whole-genome shotgun approach

ZFNs:

Zinc-finger nucleases

References

  • Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress limitations and future prospects. Brief Funct Genomics 19:26–39

    Article  CAS  PubMed  Google Scholar 

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590

    Article  CAS  PubMed Central  Google Scholar 

  • Babu P, Baranwal DK, Harikrishna Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A (2020) Application of genomics tools in wheat breeding to attain durable rust resistance. Front Plant Sci 11:567147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai X, Huang X, Tian S, Peng H, Zhan G, Goher F, Guo J (2021) RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp. tritici. Mol Plant Pathol 22(4):410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal M, Kaur S, Dhaliwal H, Bains N, Bariana H, Chhuneja P, Bansal U (2016) Mapping of Aegilops umbellulata—derived leaf rust and stripe loci in wheat. Plant Pathol 66:38–44. https://doi.org/10.1111/ppa.12549

    Article  CAS  Google Scholar 

  • Bariana HS, Bansal UK, Basandrai D, Chhetri M (2013) Disease resistance. In: Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 291–314

    Chapter  Google Scholar 

  • Bishnoi SK, Kumar S, Singh GP (2021) Wheat blast readiness of the Indian wheat sector. Curr Sci 120:262–263

    Google Scholar 

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. Semin Cell Dev Biol 96:65–76

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Satapathy L, Basu S, Jha SK, Kumar M, Mukhopadhyay K (2020) Characterization of the leaf rust responsive ARF genes in wheat (Triticum aestivum L.). Plant Cell Rep 39:1639–1654

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Purohit J, Mehta S, Parmar H, Karippadakam S, Rashid A, Balamurugan A, Bansal S, Prakash G, Achary VMM, Reddy MK (2022) Precision genome editing toolbox: applications and approaches for improving rice’s genetic resistance to pathogens. Agronomy 12:565

    Article  CAS  Google Scholar 

  • Choudhary JR, Tripathi A, Kaldate R, Rana M, Mehta S, Ahlawat J, Bansal M, Zaid A, Wani SH (2022) Breeding efforts for crop productivity in abiotic stress environment. In: Augmenting crop productivity in stress environment. Springer, Singapore, pp 63–103

    Chapter  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1 isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Sarrocco S (2022) Transgenic approaches for plant disease control: status and prospects 2021. Plant Pathol 71(1):207–225

    Article  CAS  Google Scholar 

  • Corredor-Moreno P, Saunders DGO (2020) Expecting the unexpected: factors influencing the emergence of fungal and oomycete plant pathogens. New Phytol 225:118–125

    Article  PubMed  Google Scholar 

  • Diéguez MJ, Altieri E, Ingala LR (2006) Physical and genetic mapping of amplified fragment length polymorphisms and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat. Theor Appl Genet 112:251–257

    Article  PubMed  Google Scholar 

  • Dilawari R, Kaur N, Priyadarshi N, Kumar B, Abdelmotelb KF, Lal SK, Singh B, Tripathi A, Aggarwal SK, Jat BS, Mehta S (2021) Genome editing: a tool from the vault of science for engineering climate-resilient cereals. In: Harsh environment and plant resilience: molecular and functional aspects. Springer, Cham, pp 45–72

    Chapter  Google Scholar 

  • Dong Y, Xu D, Xu X, Ren Y, Gao F, Song J, Jia A, Hao Y, He Z, Xia X (2022) Fine mapping of QPm. caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). Theor Appl Genet 10:1–7

    CAS  Google Scholar 

  • Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkot AFA, Chhuneja P, Kaur S, Saluja M, Keller B, Singh K (2015) Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS One 10:e0128297

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Esse HP, Reuber TL, Does D (2020) Genetic modification to improve disease resistance in crops. New Phytol 225:70–86

    Article  PubMed  Google Scholar 

  • Fabre F, Rocher F, Alouane T, Langin T, Bonhomme L (2020) Searching for FHB resistances in bread wheat: susceptibility at the crossroad. Front Plant Sci 11:731

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2020) Rome. http://www.fao.org

  • Fernando WD, Oghenekaro AO, Tucker JR, Badea A (2021) Building on a foundation: advances in epidemiology resistance breeding and forecasting research for reducing the impact of fusarium head blight in wheat and barley. Can J Plant Pathol 1:32

    Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A 100:15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ (2020) Threats to global food security from emerging fungal and oomycete crop pathogens. Nat Food 1:332–342

    Article  Google Scholar 

  • Forrest K, Pujol V, Bulli P, Pumphrey M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Lagudah E, Hayden M, Spielmeyer W (2014) Development of a SNP marker assay for theLr67gene of wheat using a genotyping by sequencing approach. Mol Breed 34:2109–2118

    Article  CAS  Google Scholar 

  • Ganeva G, Georgieva V, Panaĭotova M, Stoilova TS, Balevska P (2000) The transfer of genes for Brown Rust resistance from Aegilops umbellulata Eig. to wheat (Triticum aestivum L.) genome. Genetika 36(1):71–76

    CAS  PubMed  Google Scholar 

  • Gebrewahid T, Zhang P, Zhou Y, Yan X, Xia X, He Z, Liu D, Li Z (2020) QTL mapping of adult plant resistance to stripe rust and leaf rust in a Fuyu 3/Zhengzhou 5389 wheat population. Crop J 8. https://doi.org/10.1016/j.cj.2019.09.013

  • Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal AK (2015) Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 6:861

    Article  PubMed  PubMed Central  Google Scholar 

  • Gultyaeva E, Shaydayuk E, Gannibal P (2021) Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture 11:319

    Article  CAS  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19:3347–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helguera M, Khan I, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2002) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  Google Scholar 

  • Herrera-Foessel S, Singh R, Huerta-Espino J, Rosewarne G, Periyannan S, Viccars L, Calvo-Salazar V, Lan C, Lagudah E (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884. https://maswheat.ucdavis.edu/

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Espino J, Singh R, Crespo-Herrera LA, Villaseñor-Mir HE, Rodriguez-Garcia MF, Dreisigacker S, Barcenas-Santana D, Lagudah E (2020) Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Front Plant Sci 11:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Gupta DR, Hossain A, Roy KK, He X, Kabir MR, Wang GL (2020) Wheat blast: a new threat to food security. Phytopathol Res 2:1–13

    Article  Google Scholar 

  • Jamil S, Shahzad R, Ahmad S, Fatima R, Zahid R, Anwar M, Wang X (2020) Role of genetics genomics and breeding approaches to combat stripe rust of wheat. Front Nutr 7:173

    Article  Google Scholar 

  • Katoch S, Sharma V, Sharma D, Salwan R, Rana SK (2022) Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. Planta 255(1):1–18

    Article  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci U S A 110:19324–19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E et al (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolmer JA, Su Z, Bernardo A, Bai G, Chao S (2018) Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theor Appl Genet 131:1553–1560

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Aggarwal SK, Mehta S (2022a) Smut and bunt diseases of wheat: biology, identification, and management. In: New horizons in wheat and barley research. Springer, Singapore, pp 107–131

    Chapter  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Mehta S (2022b) A walk towards Wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress 3:100048

    Article  CAS  Google Scholar 

  • Kthiri D, Loladze AN, Diaye A, Nilsen KT, Walkowiak S, Dreisigacker S, Ammar K, Pozniak CJ (2019) Mapping of genetic loci conferring resistance to leaf rust from three globally resistant durum wheat sources. Front Plant Sci 10:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang J, Li Y, Ma L (2020) Current strategies and advances in wheat biology. Crop J 8:879–891

    Article  Google Scholar 

  • Li QY, Gao C, Li YK (2021a) Advances in genetic studies of black point disease in wheat. J Plant Dis Prot 1:9

    CAS  Google Scholar 

  • Li S, Zhang C, Li J, Yan L, Wang N, Xia L (2021b) Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Commun 2:100211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M, Huang S, Qiao L, Zheng W, Zeng Q, Wang Q (2022) Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theor Appl Genet 135(1):351–365

    Article  PubMed  Google Scholar 

  • Mago R (2021) Genome improvement for rust disease resistance in wheat. In: Genome engineering for crop improvement. Springer, Cham, pp 141–161

    Chapter  Google Scholar 

  • Mago R, Tabe L, Vautrin S (2014) Major haplotype divergence including multiple germin-like protein genes at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biol 14:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandalà G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D’Ovidio R (2019) Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and crown rot diseases. Mol Plant-Microbe Interact 32:583–592

    Article  PubMed  Google Scholar 

  • Mbinda W, Masaki H (2021) Breeding strategies and challenges in the improvement of blast disease resistance in finger millet. A current review. Front Plant Sci 5:2151

    Google Scholar 

  • McLaughlin JE, Darwish NI, Garcia-Sanchez J, Tyagi N, Trick HN, McCormick Dill-Macky R, Tumer NE (2021) A lipid transfer protein has antifungal and antioxidant activity and suppresses Fusarium head blight disease and DON accumulation in transgenic wheat. Phytopathology 111:671–683

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019) Rice, marker-assisted breeding, and disease resistance. In: Disease resistance in crop plants. Springer, Cham, pp 83–111

    Chapter  Google Scholar 

  • Mehta S, Lal SK, Sahu KP, Venkatapuram AK, Kumar M, Sheri V, Varakumar P, Vishwakarma C, Yadav R, Jameel MR, Ali M, Achary VMM, Reddy MK (2020) CRISPR/Cas9-edited rice: a new frontier for sustainable agriculture. In: New frontiers in stress management for durable agriculture. Springer, Singapore, pp 427–458

    Chapter  Google Scholar 

  • Miedaner T, Juroszek P (2021) Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor Appl Genet 1:15

    Google Scholar 

  • Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui AC, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES (2019) The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol 179:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Shah J (2015) Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol Plant-Microbe Interact 28:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Narang D, Kaur S, Steuernagel B (2020) Discovery and characterisation of a new leaf rust resistance gene introgressed in wheat from wild wheat Aegilops peregrina. Sci Rep 10:7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal D, Kumar S, Bhardwaj SC, Devate NB, Patial M, Parmeshwarappa SKV (2022) Molecular marker aided characterization of race specific and non-race specific rust resistance genes in elite wheat (Triticum spp.) germplasm. Australas Plant Pathol 51:261–272

    Article  CAS  Google Scholar 

  • Pandurangan S, Workman C, Nilsen K, Kumar S (2021) Introduction to marker-assisted selection in wheat breeding. In: Accelerated breeding of cereal crops. Humana, New York, pp 77–117

    Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013a) Endogenous silencing of P uccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat. Plant J 73(3):521–532

    Article  CAS  PubMed  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013b) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol Biol 81(6):595–608

    Article  CAS  PubMed  Google Scholar 

  • Parlange F, Oberhaensli S, Breen J, Platzer M, Taudien S (2011) A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome. Funct Integr Genom 11:671–677

    Article  CAS  Google Scholar 

  • Pramanik D, Shelake RM, Kim MJ, Kim JY (2021) CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement. Mol Plant 14:127–150

    Article  CAS  PubMed  Google Scholar 

  • Prasad P, Siddanna S, Bhardwaj SC, Gangwar OP, Subodh K (2019) Rust pathogen effectors: perspectives in resistance breeding. Planta 250:1–22

    Article  CAS  PubMed  Google Scholar 

  • Prins R, Groenewald JZ, Marais G, Snape J, Koebner R (2001) AFLP and STS tagging of Lr19 a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J (2019) Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. Int J Mol Sci 20:206

    Article  PubMed Central  Google Scholar 

  • Rahman M, Sultana S, Nath D, Kalita S, Chakravarty D, Mehta S, Wani SH, Islam MA (2019) Molecular breeding approaches for disease resistance in sugarcane. In: Disease resistance in crop plants. Springer, Cham, pp 131–155

    Chapter  Google Scholar 

  • Randhawa MS, Bains NS, Sohu VS, Chhuneja P, Trethowan RM, Bariana HS, Bansal U (2019) Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy 9:497

    Article  CAS  Google Scholar 

  • Rani R, Singh R, Yadav N (2019) Evaluating stripe rust resistance in Indian wheat genotypes and breeding lines using molecular markers. C R Biol 342:154–174. https://doi.org/10.1016/j.crvi.2019.04.002

    Article  PubMed  Google Scholar 

  • Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU, Wu Z (2021) A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr Issues Mol Biol 43:1950–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy I, Kottakota C, Belay Y, Dinoor A, Keller B, Ben-David R (2016) Identification and genetic mapping of PmAF7DS a powdery mildew resistance gene in bread wheat (Triticum aestivum L.). Theor Appl Genet 129. https://doi.org/10.1007/s00122-016-2688-0

  • Ren Y, Liu L, He Z, Wu L, Bai B, Xia X (2015) QTL mapping of adult-plant resistance to stripe rust in a ‘Lumai 21 × Jingshuang 16’ wheat population. Plant Breed 134. https://doi.org/10.1111/pbr.12290

  • Santillán Martínez MI, Bracuto V, Koseoglou E, Appiano M, Jacobsen E, Visser RGF (2020) CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol 20:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S, Puntoni G, Baroncelli R, Vannacci G, Dufresne M (2020) Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the biocontrol of Fusarium head blight. Phytopathology 111(7):1129–1136

    Article  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, Mc Roberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    Article  PubMed  Google Scholar 

  • Simón MR, Börner A, Struik PC (2021) Fungal wheat diseases: etiology breeding and integrated management. Front Plant Sci 12:671060

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Franks CD, Huang L (2004) Lr41 Lr39 and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Mallick N, Chand S, Kumari P, Sharma JB, Sivasamy M, Jayaprakash P, Prabhu KV, Jha SK, Vinod (2017) Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733. J Genet 96:951–957

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Mehta S, Aggarwal SK, Tiwari M, Bhuyan SI, Bhatia S, Islam MA (2019) Barley, disease resistance, and molecular breeding approaches. In: Disease resistance in crop plants. Springer, Cham, pp 261–299

    Chapter  Google Scholar 

  • Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, Roy A, Chakraborty A, Singh IK (2022) How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int J Mol Sci 23:1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla J, Lüthi L, Wicker T, Bansal U, Krattinger SG, Keller B (2017) Characterization of Lr75: a partial broad-spectrum leaf rust resistance gene in wheat. Theor Appl Genet 130:1–12

    Article  CAS  PubMed  Google Scholar 

  • Stummer BE, Zhang X, Yang H, Harvey PR (2022) Co-inoculation of Trichoderma gamsii A5MH and Trichoderma harzianum Tr906 in wheat suppresses in planta abundance of the crown rot pathogen Fusarium pseudograminearum and impacts the rhizosphere soil fungal microbiome. Biol Control 165:104809

    Article  CAS  Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Tomkowiak A, Skowrońska R, Buda A, Kurasiak-Popowska D, Nawracała J, Kowalczewski PŁ, Pluta M, Radzikowska D (2019) Identification of leaf rust resistance genes in selected wheat cultivars and development of multiplex PCR. Open Life Sci 14:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Kumar R, Kumar V, Won SY, Shukla P (2021) Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food 12:125–144

    Article  PubMed  Google Scholar 

  • Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M, Chen J, Dodds PN (2021) Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat Plants 7:1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, Wang X (2018a) LecRK-V an L-type lectin receptor kinase in Haynaldia villosa plays positive role in resistance to wheat powdery mildew. Plant Biotechnol J 16:50–62

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018b) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Gong Q, Ye X (2020) Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theor Appl Genet 133:1603–1622

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Fan X, He M, Hu Z, Tang C, Zhang S, Lin D, Gan P, Wang J, Huang X, Gao C (2022) Transcriptional repression of TaNOX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust. Plant Cell 34(5):1784–1803

    Article  PubMed  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wessels E, Botes WC (2014) Accelerating resistance breeding in wheat by integrating marker-assisted selection and doubled haploid technology. S Afr J Plant Soil 31:35–43

    Article  Google Scholar 

  • Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, Liu L, Zhu B (2019) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant 12:1434–1446

    Article  CAS  PubMed  Google Scholar 

  • Yin K, Qiu JL (2019) Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc Lond Ser B Biol Sci 374:20180322

    Article  CAS  Google Scholar 

  • Zatybekov A, Genievskaya Y, Rsaliyev A, Maulenbay A, Yskakova G, Savin T, Abugalieva S (2022) Identification of quantitative trait loci for leaf rust and stem rust seedling resistance in bread wheat using a genome-wide association study. Plan Theory 11(1):74

    Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang Z, Ma H, Huang L, Ding F, Du Y, Ma Z (2021) Pyramiding of Fusarium head blight resistance quantitative trait loci Fhb1 Fhb4 and Fhb5 in modern Chinese wheat cultivars. Front Plant Sci 5:12

    Google Scholar 

  • Zhang Q, Li Y, Li Y, Fahima T, Shen QH, Xie C (2022) Introgression of the powdery mildew resistance genes Pm60 and Pm60b from Triticum urartu to common wheat using durum as a ‘bridge’. Pathogens 11(1):25

    Article  CAS  Google Scholar 

  • Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y (2011) Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet 123:431–438

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Guo J (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A. et al. (2022). The Role of Genetic, Genomic, and Breeding Approaches in the Fight Against Fungal Diseases in Wheat. In: Abd-Elsalam, K.A., Mohamed, H.I. (eds) Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-3120-8_12

Download citation

Publish with us

Policies and ethics