Skip to main content

Cellulose Nanocrystal as a New Promising Candidate in Textile Wastewater Treatment

  • Chapter
  • First Online:
Textile Wastewater Treatment

Abstract

Water pollution from various sources is a serious issue growing on at a worldwide level that must be addressed on an emergency basis in order to provide access for all humans to clean and safe water for consumption. Textile industry is one of the major water pollution sources, from where pollutants of various types can mix up with water leading to heavily contaminated water. Researchers have developed and attempted to bring down water pollution from textile industrial effluents in the past several decades. Cellulose nanocrystals are new class of materials originating from cellulose family which have been profoundly used in environmental chemistry, which can be seen from the steadily increasing number of research articles published on cellulose nanocrystals in the last decade. Cellulose nanocrystals are renewable, biodegradable, mechanically strong and liquid crystalline in nature. Despite these prominent features, often cellulose nanocrystals are not employed in textile wastewater treatment at their natural state due to poor pollutant removal efficiency. To rectify this impediment, functionalization of cellulose nanocrystals is carried out or their nanocomposites are prepared before their application in textile wastewater treatment. This book chapter discusses all the recent contributions made towards the utilization of cellulose nanocrystal-based materials for textile wastewater treatment. Preparation, pollutant removal efficacy and other advantages of using the cellulose nanocrystalline derivatives for textile wastewater have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalkarim SYH, Yu HY, Wang C et al (2018) Green synthesis of sheet-like cellulose nanocrystal–zinc oxide nanohybrids with multifunctional performance through one-step hydrothermal method. Cellulose 25:6433–6446. https://doi.org/10.1007/s10570-018-2011-0

    Article  CAS  Google Scholar 

  2. Bethke K, Palantöken S, Andrei V et al (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1800409. https://doi.org/10.1002/adfm.201800409

    Article  CAS  Google Scholar 

  3. Chen X, Kuo DH, Lu D (2016) N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem Eng J 295:192–200. https://doi.org/10.1016/j.cej.2016.03.047

    Article  CAS  Google Scholar 

  4. Chen T, Wang Y, Wang Y, Xu Y (2015) Biotemplated synthesis of hierarchically nanostructured TiO2 using cellulose and their applications in photocatalysis. RSC Adv 5:1673–1679. https://doi.org/10.1039/C4RA13955K

    Article  CAS  Google Scholar 

  5. Cheng M, Qin Z, Chen Y et al (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5:4656–4664. https://doi.org/10.1021/acssuschemeng.6b03194

    Article  CAS  Google Scholar 

  6. Choudhury RR, Sahoo SK, Gohil JM (2020) Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 27:6719–6746. https://doi.org/10.1007/s10570-020-03253-z

    Article  CAS  Google Scholar 

  7. Deng D, Lamssali M, Aryal N et al (2020) Textiles wastewater treatment technology: a review. Water Environ Res 92:1805–1810. https://doi.org/10.1002/wer.1437

    Article  CAS  Google Scholar 

  8. Dong L, Deng R, Xiao H et al (2019) Hierarchical polydopamine coated cellulose nanocrystal microstructures as efficient nanoadsorbents for removal of Cr(VI) ions. Cellulose 26:6401–6414. https://doi.org/10.1007/s10570-019-02529-3

    Article  CAS  Google Scholar 

  9. Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27:2419–2427. https://doi.org/10.1007/s10924-019-01533-9

    Article  CAS  Google Scholar 

  10. Fan X-M, Yu H-Y, Wang D-C et al (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7:18067–18075. https://doi.org/10.1021/acssuschemeng.9b05081

    Article  CAS  Google Scholar 

  11. Grishkewich N, Mohammed N, Wei S et al (2020) Dye removal using sustainable membrane adsorbents produced from melamine formaldehyde-cellulose nanocrystals and hard wood pulp. Ind Eng Chem Res 59:20854–20865. https://doi.org/10.1021/acs.iecr.0c04033

    Article  CAS  Google Scholar 

  12. Guan Y, Yu H-Y, Abdalkarim SYH et al (2019) Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. Int J Biol Macromo 132:51–62. https://doi.org/10.1016/j.ijbiomac.2019.03.104

    Article  CAS  Google Scholar 

  13. He X, Male KB, Nesterenko PN et al (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804. https://doi.org/10.1021/am403222u

    Article  CAS  Google Scholar 

  14. Hoang MT, Pham TD, Verheyen D et al (2020) Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II). Chem Eng J 228:115998. https://doi.org/10.1016/j.ces.2020.115998

    Article  CAS  Google Scholar 

  15. Ikram M, Mahmood A, Haider A et al (2021) Dye degradation, antibacterial and in-silico analysis of Mg/cellulose-doped ZnO nanoparticles. Int J Biol Macromo 185:153–164. https://doi.org/10.1016/j.ijbiomac.2021.06.101

    Article  CAS  Google Scholar 

  16. Jain P, Varshney S, Srivastava S (2017) Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling. Appl Water Sci 7:1827–1839. https://doi.org/10.1007/s13201-015-0356-1

    Article  CAS  Google Scholar 

  17. Jiang X, Lou C, Hua F et al (2020) Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents. J Clean Prod 251:119749. https://doi.org/10.1016/j.jclepro.2019.119749

    Article  CAS  Google Scholar 

  18. Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456. https://doi.org/10.1007/s10570-015-0649-4

    Article  CAS  Google Scholar 

  19. Karim Z, Claudpierre S, Grahn M et al (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428. https://doi.org/10.1016/j.memsci.2016.05.018

    Article  CAS  Google Scholar 

  20. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  CAS  Google Scholar 

  21. Kusmono, Listyanda RF, Wildan MW, Ilman MN (2020) Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6:e05486. https://doi.org/10.1016/j.heliyon.2020.e05486

  22. Liang H, Liu K, Ni Y (2016) Cellulose nanocrystals-assisted hydrothermal synthesis of mesoporous α-Fe2O3 for photocatalysis. J Ceram Process Res 17:990–993. https://doi.org/10.36410/jcpr.2016.17.9.990

    Article  Google Scholar 

  23. Lin J, Lin F, Chen X et al (2019) Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res 58:11003–11012. https://doi.org/10.1021/acs.iecr.9b01353

    Article  CAS  Google Scholar 

  24. Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on nanocellulose surfaces. Cellulose 26:249–279. https://doi.org/10.1007/s10570-018-02239-2

    Article  CAS  Google Scholar 

  25. Ma J, Hu J, Tang Y et al (2020) In-situ preparation of hollow cellulose nanocrystals/zeolitic imidazolate framework hybrid microspheres derived from Pickering emulsion. J Colloid Interf Sci 572:160–169. https://doi.org/10.1016/j.jcis.2020.03.076

    Article  CAS  Google Scholar 

  26. Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int 69:741–751. https://doi.org/10.1002/pi.5993

    Article  CAS  Google Scholar 

  27. Modi S, Fulekar MH (2020) Synthesis and characterization of zinc oxide nanoparticles and zinc oxide/cellulose nanocrystals nanocomposite for photocatalytic degradation of Methylene blue dye under solar light irradiation. Nanotechnol Environ Eng 5:1–12. https://doi.org/10.1007/s41204-020-00080-2

    Article  CAS  Google Scholar 

  28. Mohammed N, Lian H, Islam MS et al (2021) Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem Eng J 417:129237. https://doi.org/10.1016/j.cej.2021.129237

    Article  CAS  Google Scholar 

  29. Nkalane A, Oyewo OA, Leswifi T, Onyango MS (2019) Application of coagulant obtained through charge reversal of sawdustderived cellulose nanocrystals in the enhancement of water turbidity removal. Mater Res Express 6:105060

    Article  CAS  Google Scholar 

  30. Obele CM, Ejimofor MI, Atuanya CU, Ibenta ME (2021) Cassava stem cellulose (CSC) nanocrystal for optimal methylene Blue bio sorption with response surface design. Curr Opin Green Sustain Chem 4:100067. https://doi.org/10.1016/j.crgsc.2021.100067

    Article  CAS  Google Scholar 

  31. Oyewo OA, Adeniyi A, Sithole BB, Onyango MS (2020b) Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of Methylene Blue dye. ACS Omega 5:18798–18807. https://doi.org/10.1021/acsomega.0c01924

    Article  CAS  Google Scholar 

  32. Oyewo OA, Elemike EE, Onwudiwe DC, Onyango MS (2020a) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromo 164:2477–2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074

    Article  CAS  Google Scholar 

  33. Oyewo OA, Mutesse B, Leswifi TY, Onyango MS (2019) Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals. J Environ Chem Eng 7:103251. https://doi.org/10.1016/j.jece.2019.103251

    Article  CAS  Google Scholar 

  34. Oyewo OA, Nevondo NG, Onwudiwe DC, Onyango MS (2021) Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite. Inorg Organomet Polym 31:2542–2552. https://doi.org/10.1007/s10904-020-01847-5

    Article  CAS  Google Scholar 

  35. Panchal P, Ogunsona E, Mekonnen T (2019) Trends in advanced functional material applications of nanocellulose. Processes 7:1–27. https://doi.org/10.3390/pr7010010

    Article  CAS  Google Scholar 

  36. Peng XY, Ding EY (2012) Novel synthesis of TiO2 nanocrystals induced by nanocrystal cellulose. Appl Mech Mater 117–119:944–948. https://doi.org/10.4028/www.scientific.net/AMM.117-119.944

    Article  CAS  Google Scholar 

  37. Peng X, Ding E, Xue F (2012) In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature. Appl Surf Sci 258:6564–6570. https://doi.org/10.1016/j.apsusc.2012.03.077

    Article  CAS  Google Scholar 

  38. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947

    Article  CAS  Google Scholar 

  39. Pinto AH, Taylor JK, Chandradat R et al (2020) Wood-based cellulose nanocrystals as adsorbent of cationic toxic dye, Auramine O, for water treatment. J Environ Chem Eng 8:104187. https://doi.org/10.1016/j.jece.2020.104187

    Article  CAS  Google Scholar 

  40. Putro JN, Santoso SP, Soetaredjo FE et al (2019) Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag 12:100260. https://doi.org/10.1016/j.enmm.2019.100260

    Article  Google Scholar 

  41. Rafieian F, Jonoobi M, Yu Q (2019) A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 26:3359–3373. https://doi.org/10.1007/s10570-019-02320-4

    Article  CAS  Google Scholar 

  42. Ranby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. https://doi.org/10.1039/DF9511100158

    Article  Google Scholar 

  43. Ranjbar D, Raeiszadeh M, Lewis L et al (2020) Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose 27:3211–3232. https://doi.org/10.1007/s10570-020-03021-z

    Article  CAS  Google Scholar 

  44. Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. https://doi.org/10.1007/s10853-011-5696-0

    Article  CAS  Google Scholar 

  45. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498. https://doi.org/10.3762/bjnano.9.232

    Article  CAS  Google Scholar 

  46. Sharma PR, Sharma SK, Lindström T, Hsiao BS (2020) Nanocellulose-enabled membranes for water purification: perspectives. Adv Sustain Syst 4:1–28. https://doi.org/10.1002/adsu.201900114

    Article  CAS  Google Scholar 

  47. Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M (2020) Death by waste: fashion and textile circular economy case. Sci Total Environ 718:137317. https://doi.org/10.1016/j.scitotenv.2020.137317

    Article  CAS  Google Scholar 

  48. Song ML, Yu HY, Chen LM et al (2019) Multibranch strategy to decorate carboxyl groups on cellulose nanocrystals to prepare adsorbent/flocculants and Pickering emulsions. ACS Sustain Chem Eng 7:6969–6980. https://doi.org/10.1021/acssuschemeng.8b06671

    Article  CAS  Google Scholar 

  49. Suhas, Gupta VK, Carrott PJM et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

  50. Svagan AJ, Busko D, Avlasevich Y et al (2014) Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy. ACS Nano 8:8198–8207. https://doi.org/10.1021/nn502496a

    Article  CAS  Google Scholar 

  51. Tan KB, Reza AK, Abdullah AZ et al (2018) Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal. Carbohydr Polym 199:92–101. https://doi.org/10.1016/j.carbpol.2018.07.006

    Article  CAS  Google Scholar 

  52. Tran A, Boott CE, MacLachlan MJ (2020) Understanding the self-assembly of cellulose nanocrystals—toward chiral photonic materials. Adv Mater 32:1–15. https://doi.org/10.1002/adma.201905876

    Article  CAS  Google Scholar 

  53. Vanderfleet OM, Osorio DA, Cranston ED (2017) Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos Trans A Math Phys Eng Sci 376. https://doi.org/10.1098/rsta.2017.0041

  54. Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(3):57. https://doi.org/10.3390/nano7030057

  55. Wang DC, Yang X, Yu HY et al (2020a) Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal. J Hazard Mater 383:121123. https://doi.org/10.1016/j.jhazmat.2019.121123

    Article  CAS  Google Scholar 

  56. Wang G, Zhang J, Lin S et al (2020b) Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution. Cellulose 27:2085–2097. https://doi.org/10.1007/s10570-019-02944-6

    Article  CAS  Google Scholar 

  57. Wilson LD (2014) An overview of coagulation-flocculation technology. Water conditioning and purification international. https://wcponline.com/2014/04/17/overview-coagulation-flocculation-technology/

  58. Yang X, Liu H, Han F et al (2017) Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue. Carbohydr Polym 175:464–472. https://doi.org/10.1016/j.carbpol.2017.08.007

    Article  CAS  Google Scholar 

  59. Yang RT, Yu HY, Song ML et al (2016) Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method. Cellulose 23:1871–1884. https://doi.org/10.1007/s10570-016-0907-0

    Article  CAS  Google Scholar 

  60. Yu HY, Chen GY, Wang YB, Yao JM (2014) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273. https://doi.org/10.1007/s10570-014-0491-0

    Article  CAS  Google Scholar 

  61. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. https://doi.org/10.1021/acssuschemeng.6b00126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnalatha Venkatanarasimhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatanarasimhan, S., Gangadharan, D., Palanisamy, T. (2022). Cellulose Nanocrystal as a New Promising Candidate in Textile Wastewater Treatment. In: Muthu, S.S., Khadir, A. (eds) Textile Wastewater Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2832-1_6

Download citation

Publish with us

Policies and ethics