Skip to main content

Biogenic Synthesis of Lead-Based Nanoparticles and Their Recent Applications

  • Chapter
  • First Online:
Plant and Nanoparticles

Abstract

Lead nanoparticles (Pb NPs) are a type of metallic NPs employed in diverse uses, including sensors, ceramics, glasses, pigments, batteries, and solar cells. The production of harmful chemicals and noxious contaminants is a major issue in the chemical synthesis of Pb-based NPs. Many research investigations on the eco-benign fabrication of Pb-based NPs employing microbial biomass and plant extracts without creating toxic waste have been performed to deal with these problems. Plants could be particularly useful for studying the biosynthesis of Pb-based NPs among green sources. The green synthesis of Pb-based NPs like Pb NPs, PbO NPs, and PbS NPs using diverse plant extracts and microbes in the absence of harmful capping agents has been discussed. The current advancement and future direction in the eco-benevolent production of Pb-based NPs are discussed in this chapter. Furthermore, the biosynthesized Pb-based NPs’ uses have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374.

    Article  CAS  Google Scholar 

  2. Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11(5), 2804–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., Viet, N. M., & Nguyen, V. H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203, 111858.

    Article  CAS  PubMed  Google Scholar 

  4. Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., Lam, S. E., Khandaker, M. U., & Bradley, D. A. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University-Science, 34, 101869.

    Article  Google Scholar 

  5. Ghotekar, S., Pansambal, S., Bilal, M., Pingale, S. S., & Oza, R. (2021). Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective—a review. Case Studies in Chemical and Environmental Engineering, 3, 100089.

    Article  CAS  Google Scholar 

  6. Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K., & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902.

    Article  CAS  Google Scholar 

  7. Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370.

    Article  CAS  PubMed  Google Scholar 

  8. Dabhane, H., Ghotekar, S., Tambade, P., Pansambal, S., Murthy, H. A., Oza, R., & Medhane, V. (2021). A review on environmentally benevolent synthesis of CdS nanoparticle and their applications. Environmental Chemistry and Ecotoxicology, 3, 209–219.

    Article  CAS  Google Scholar 

  9. Dabhane, H., Ghotekar, S., Tambade, P., Pansambal, S., Oza, R., & Medhane, V. (2021). MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations. European Journal of Chemistry, 12(1), 86–108.

    Article  CAS  Google Scholar 

  10. Verma, R., Pathak, S., Srivastava, A. K., Prawer, S., & Tomljenovic-Hanic, S. (2021). ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. Journal of Alloys and Compounds, 876, 160175.

    Article  CAS  Google Scholar 

  11. Ghotekar, S. (2019). A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian Journal of Green Chemistry, 3(2), 187–200.

    Google Scholar 

  12. Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., & Pansambal, S. (2019). A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. Journal of Chemical Reviews, 1(3), 154–163.

    Google Scholar 

  13. Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S., & Oza, R. (2019). A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. Journal of Chemical Reviews, 1(4), 260–270.

    Article  Google Scholar 

  14. Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R., & Mane, D. (2020). Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. Journal of Chemical Reviews, 2(3), 157–168.

    CAS  Google Scholar 

  15. Paiva-Santos, A. C., Herdade, A. M., Guerra, C., Peixoto, D., Pereira-Silva, M., Zeinali, M., Mascarenhas-Melo, F., Paranhos, A., & Veiga, F. (2021). Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. International Journal of Pharmaceutics, 597, 120311.

    Article  CAS  PubMed  Google Scholar 

  16. Dabhane, H., Ghotekar, S., Zate, M., Kute, S., Jadhav, G., & Medhane, V. (2022). Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities. Inorganic Chemistry Communications, 138, 109270.

    Article  CAS  Google Scholar 

  17. Kalia, R., Chauhan, A., Verma, R., Mansi, K., Batoo, K. M., Kumar, R., Hussain, S., Ghotekar, S., & Ijaz, M. F. (2022). Photocatalytic degradation properties of Li‐Cr ions substituted CoFe2O4 nanoparticles for wastewater treatment application. Physica Status Solidi A, 219, 2100539.

    Article  CAS  Google Scholar 

  18. Kelele, K. G., Tadesse, A., Desalegn, T., Ghotekar, S., Balachandran, R., & Murthy, H. C. A. (2021). Synthesis and characterizations of metal ions doped barium strontium titanate (BST) nanomaterials for photocatalytic and electrical applications: A mini review. International Journal of Materials Research, 112(8), 665–677.

    Article  CAS  Google Scholar 

  19. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., & Oza, R. (2020). A review on eco-friendly synthesis of BiVO4 nanoparticle and its eclectic applications. Advanced Journal of Science and Engineering, 1(4), 106–112.

    Google Scholar 

  20. Dabhane, H., Ghotekar, S., Tambade, P., & Medhane, V. (2020). Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian Journal of Nanosciences and Materials, 3(4), 291–299.

    CAS  Google Scholar 

  21. Ndwandwe, B. K., Malinga, S. P., Kayitesi, E., & Dlamini, B. C. (2021). Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science & Technology, 56(6), 2640–2650.

    Article  CAS  Google Scholar 

  22. Ghotekar, S., Pagar, T., Pansambal, S., & Oza, R. (2020). A review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 2, 128–143.

    Google Scholar 

  23. Ghotekar, S., Dabhane, H., Pansambal, S., Oza, R., Tambade, P., & Medhane, V. (2020). A review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications. Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 2(3), 102–111.

    Google Scholar 

  24. Pagar, T., Ghotekar, S., Pansambal, S., Oza, R., & Marasini, B. P. (2020). Facile plant extract mediated eco-benevolent synthesis and recent applications of CaO-NPs: A state-of-the-art review. Journal of Chemical Reviews, 2(3), 201–210.

    CAS  Google Scholar 

  25. Ghotekar, S. (2019). Plant extract mediated biosynthesis of Al2O3 nanoparticles-a review on plant parts involved, characterization and applications. Nanochemistry Research, 4(2), 163–169.

    CAS  Google Scholar 

  26. Tran, T. V., Nguyen, D. T. C., Kumar, P. S., Din, A. T. M., Jalil, A. A., & Vo, D. V. N. (2022). Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: A review. Environmental Chemistry Letters, 20, 1–23.

    Article  CAS  Google Scholar 

  27. Dabhane, H., Ghotekar, S. K., Tambade, P. J., Pansambal, S., Ananda Murthy, H. C., Oza, R., & Medhane, V. (2021). Cow urine mediated green synthesis of nanomaterial and their applications: A state-of-the-art review. Journal of Water and Environmental Nanotechnology, 6(1), 81–91.

    CAS  Google Scholar 

  28. Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P., & Lohita, D. (2022). Green synthesis of bismuth based nanoparticles and its applications-A review. Sustainable Chemistry and Pharmacy, 25, 100547.

    Article  CAS  Google Scholar 

  29. Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S., & Oza, R. (2021). Phytogenic synthesis of manganese dioxide nanoparticles using plant extracts and their biological application. Handbook of greener synthesis of nanomaterials and compounds (pp. 209–218). Elsevier.

    Google Scholar 

  30. Gur, T., Meydan, I., Seckin, H., Bekmezci, M., & Sen, F. (2022). Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research, 204, 111897.

    Article  CAS  PubMed  Google Scholar 

  31. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., & Oza, R. (2021). Biosynthesis of silver sulfide nanoparticle and its applications. In Handbook of greener synthesis of nanomaterials and compounds (pp. 191–200). Elsevier.

    Chapter  Google Scholar 

  32. Hano, C., & Abbasi, B. H. (2022). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31.

    Article  CAS  Google Scholar 

  33. Martinez-Haro, M., Green, A. J., & Mateo, R. (2011). Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field. Environmental Research, 111(4), 530–538.

    Article  CAS  PubMed  Google Scholar 

  34. Kordas, K., Roy, A., Vahter, M., Ravenscroft, J., Mañay, N., Peregalli, F., Martínez, G., & Queirolo, E. I. (2018). Multiple-metal exposure, diet, and oxidative stress in Uruguayan school children. Environmental Research, 166, 507–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tandon, S. K., Singh, S., Prasad, S., Srivastava, S., & Siddiqui, M. K. J. (2002). Reversal of lead-induced oxidative stress by chelating agent, antioxidant, or their combination in the rat. Environmental Research, 90(1), 61–66.

    Article  CAS  PubMed  Google Scholar 

  36. Kaehler, T. (1994). Nanotechnology: Basic concepts and definitions. Clinical Chemistry, 40(9), 1797–1797.

    Article  CAS  PubMed  Google Scholar 

  37. Miri, A., Sarani, M., Hashemzadeh, A., Mardani, Z., & Darroudi, M. (2018). Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chemistry Letters and Reviews, 11(4), 567–572.

    Article  CAS  Google Scholar 

  38. Elango, G., & Roopan, S. M. (2015). Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 367–373.

    Article  CAS  Google Scholar 

  39. Dumbaugh, W. H., & Lapp, J. C. (1992). Heavy‐metal oxide glasses. Journal of the American Ceramic Society, 75(9), 2315–2326.

    Article  CAS  Google Scholar 

  40. Jaffe, B., Roth, R. S., & Marzullo, S. (1955). Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate. Journal of Research of the National Bureau of Standards, 55(5), 239–254.

    Article  CAS  Google Scholar 

  41. Senvaitiene, J., Smirnova, J., Beganskiene, A., & Kareiva, A. (2007). XRD and FTIR characterisation of lead oxide-based pigments and glazes. Acta Chimica Slovenica, 54(1), 185.

    CAS  Google Scholar 

  42. Šljukić, B., Banks, C. E., Crossley, A., & Compton, R. G. (2007). Lead (IV) oxide–graphite composite electrodes: Application to sensing of ammonia, nitrite and phenols. Analytica Chimica Acta, 587(2), 240–246.

    Article  PubMed  CAS  Google Scholar 

  43. Sonmez, M. S., & Kumar, R. V. (2009). Leaching of waste battery paste components. Part 1: Lead citrate synthesis from PbO and PbO2. Hydrometallurgy, 95(1–2), 53–60.

    Article  CAS  Google Scholar 

  44. Blair, T. L. (1998). Lead oxide technology—Past, present, and future. Journal of Power Sources, 73(1), 47–55.

    Article  CAS  Google Scholar 

  45. Ragg, M. (1933). The protective action of lead pigments against rust. Transactions of the Electrochemical Society, 64(1), 59.

    Article  Google Scholar 

  46. Klein, C. A. (1968). Bandgap dependence and related features of radiation ionization energies in semiconductors. Journal of Applied Physics, 39(4), 2029–2038.

    Article  CAS  Google Scholar 

  47. Eya, D. D. O. (2006). Influence of thermal annealing on the structural and optical properties of PbO thin films prepared by chemical bath deposition technique. Pacific Journal of Science and Technology, 7(2), 114–119.

    Google Scholar 

  48. Darwish, A. A. A., El-Zaidia, E. F. M., El-Nahass, M. M., Hanafy, T. A., & Al-Zubaidi, A. A. (2014). Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO). Journal of Alloys and Compounds, 589, 393–398.

    Article  CAS  Google Scholar 

  49. Salavati-Niasari, M., Mohandes, F., & Davar, F. (2009). Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron, 28(11), 2263–2267.

    Article  CAS  Google Scholar 

  50. Bangi, U. K., Han, W., Yoo, B., & Park, H. H. (2013). Effects of successive additions of two capping ligands on the structural properties of PbO nanoparticles. Journal of Nanoparticle Research, 15(11), 1–8.

    Article  CAS  Google Scholar 

  51. Gao, P., Liu, Y., Bu, X., Hu, M., Dai, Y., Gao, X., & Lei, L. (2013). Solvothermal synthesis of α-PbO from lead dioxide and its electrochemical performance as a positive electrode material. Journal of Power Sources, 242, 299–304.

    Article  CAS  Google Scholar 

  52. Mythili, N., & Arulmozhi, K. T. (2014). Characterization studies on the chemically synthesized α and β phase PbO nanoparticles. International Journal of Scientific and Engineering Research, 5(1), 412–416.

    Google Scholar 

  53. Li, S., Yang, W., Chen, M., Gao, J., Kang, J., & Qi, Y. (2005). Preparation of PbO nanoparticles by microwave irradiation and their application to Pb (II)-selective electrode based on cellulose acetate. Materials Chemistry and Physics, 90(2–3), 262–269.

    Article  CAS  Google Scholar 

  54. Karami, H., & Ghamooshi-Ramandi, M. (2013). Synthesis of sub-micro and nanometer sized lead oxide by sol-gel pyrrolysis method and its application as cathode and anode of lead-acid batteries. International Journal of Electrochemical Science, 8(7553), e7564.

    Google Scholar 

  55. Lyons, S. W., Xiong, Y., Ward, T. L., Kodas, T. T., & Pratsinis, S. E. (1992). Role of particle evaporation during synthesis of lead oxide by aerosol decomposition. Journal of Materials Research, 7(12), 3333–3341.

    Article  CAS  Google Scholar 

  56. Ghasemi, S., Mousavi, M. F., Shamsipur, M., & Karami, H. (2008). Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrasonics Sonochemistry, 15(4), 448–455.

    Article  CAS  PubMed  Google Scholar 

  57. Karami, H., Ghasemi, M., & Matini, S. (2013). Synthesis, characterization and application of lead sulfide nanostructures as ammonia gas sensing agent. International Journal of Electrochemical Science, 8(10), 11661–11679.

    CAS  Google Scholar 

  58. Koleilat, G. I., Levina, L., Shukla, H., Myrskog, S. H., Hinds, S., Pattantyus-Abraham, A. G., & Sargent, E. H. (2008). Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2(5), 833–840.

    Article  CAS  PubMed  Google Scholar 

  59. Konstantatos, G., Huang, C., Levina, L., Lu, Z., & Sargent, E. H. (2005). Efficient infrared electroluminescent devices using solution‐processed colloidal quantum dots. Advanced Functional Materials, 15(11), 1865–1869.

    Article  CAS  Google Scholar 

  60. Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., & Sargent, E. H. (2006). Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442(7099), 180–183.

    Article  CAS  PubMed  Google Scholar 

  61. Sankar, M. V., & Abideen, S. (2015). Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. International Journal of Nanomaterials and Biostructures, 5(3), 32–39.

    Google Scholar 

  62. Pavani, K. V., Kumar, N. S., & Sangameswaran, B. B. (2012). Synthesis of lead nanoparticles by Aspergillus species. Polish Journal of Microbiology, 61(1), 61–63.

    Article  CAS  PubMed  Google Scholar 

  63. Joglekar, S., Kodam, K., Dhaygude, M., & Hudlikar, M. (2011). Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Materials Letters, 65(19–20), 3170–3172.

    Article  CAS  Google Scholar 

  64. Ramadan, O. A., Sabry, A. A., Kesht, A. T., & Amer, A. A. (2017). Biosynthesis and characterization of lead sulfide nanoparticles using wastewater bacteria. Biochemistry Letters, 13(1), 64–84.

    Article  Google Scholar 

  65. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Jan, S. A., Shinwari, Z. K., & Maaza, M. (2020). Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arabian Journal of Chemistry, 13(1), 916–931.

    Article  CAS  Google Scholar 

  66. Sutjaritvorakul, T., & Chutipaijit, S. (2020). Biological synthesis and characterization of lead oxide nanoparticles using Averrhoa bilimbi Linn. aqueous extract. AIP Conference Proceedings, 2279(1), 130001.

    Article  CAS  Google Scholar 

  67. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., & Hussain, F. (2020). Probing the physio-chemical appraisal of green synthesized PbO nanoparticles in PbO-PVC nanocomposite polymer membranes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 235, 118303.

    Article  CAS  Google Scholar 

  68. Tailor, G., & Lawal, A. M. (2021). Phytochemical screening; green synthesis, characterization and biological significance of lead oxide nanoparticles from Eucalyptus globulus Labill.(leaves). Nanotechnology for Environmental Engineering, 6(3), 1–11.

    Article  CAS  Google Scholar 

  69. Priyanka, U., Akshay, G. K. M., Elisha, M. G., Surya, T. B., Nitish, N., & Raj, M. B. (2017). Biologically synthesized PbS nanoparticles for the detection of arsenic in water. International Biodeterioration & Biodegradation, 119, 78–86.

    Article  CAS  Google Scholar 

  70. Kaur, P., Jain, P., Kumar, A., & Thakur, R. (2014). Biogenesis of PbS nanocrystals by using rhizosphere fungus i.e., Aspergillus sp. isolated from the rhizosphere of chickpea. BioNanoScience, 4(2), 189–194.

    Article  Google Scholar 

  71. Gong, J., Zhang, Z., Bai, H., & Yang, G. (2007). Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Science in China Series E: Technological Sciences, 50(3), 302–307.

    Article  CAS  Google Scholar 

  72. Seshadri, S., Saranya, K., & Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology Progress, 27(5), 1464–1469.

    Article  CAS  PubMed  Google Scholar 

  73. Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Microbial synthesis of semiconductor PbS nanocrystallites. Advanced Materials, 14(11), 815–818.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagar, K. et al. (2022). Biogenic Synthesis of Lead-Based Nanoparticles and Their Recent Applications. In: Chen, JT. (eds) Plant and Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-19-2503-0_14

Download citation

Publish with us

Policies and ethics