Skip to main content

Mechanical Properties of Superconducting Materials

  • Chapter
  • First Online:
Superconducting Materials
  • 1369 Accesses

Abstract

Superconducting materials are currently the key research target in the field of basic and applied superconductivity. The intrinsic brittleness and the poor mechanical properties of several superconductors such A15 alloys, high Tc superconductors (HTSc) and non-cuprates superconductors, halt in the pathway of a broad extent of actual applications. In order to be better commercialized, some factors have to be controlled and optimized among which is the development of exceptional processing methods for fabrication of usable superconductors. This book chapter examines the up-to-date of mechanical characteristics of superconducting materials. We start by giving an overview of the different testers used for measuring the mechanical behavior. One of the most significant mechanical properties to be enhanced is the microhardness. Therefore, we focused in the next section to microhardness and various models adopted to analyze it. Also, the mechanical nature of different types discovered superconductors from alloys, cuprates, to non-cuprates has been deeply reviewed and discussed. For each case, challenges and recent results for getting commercialized superconductors material with good mechanical properties were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Mukherjee, V.V. Rao, Design and development of high temperature superconducting magnetic energy storage for power applications—a review. Phys. C: Supercond. Appl. 563, 67–73 (2019)

    Article  ADS  Google Scholar 

  2. K.S. Haran, S. Kalsi, T. Arndt, H. Karmaker, R. Badcock, B. Buckley, E.W. Stautner, High power density superconducting rotating machines—development status and technology roadmap. Supercond. Sci. Technol. 30(12), 123002

    Google Scholar 

  3. S. Zhao, S. Withington, D.J. Goldie, C.N. Thomas, Electromagnetic models for multilayer superconducting transmission lines. Supercond. Sci. Technol. 31(8), 085012

    Google Scholar 

  4. I. Faridmehr, M.H. Osman, A.B. Adnan, A.F. Nejad, R. Hodjati, M. Azimi, Correlation between engineering stress–strain and true stress–strain curve. Am. J. Civ. Eng. Archit. 2(1), 53–59 (2014)

    Google Scholar 

  5. J. Hay, Introduction to instrumented indentation testing. Exp. Tech. 33(6), 66–72 (2009)

    Article  Google Scholar 

  6. M.L. Palacio, B. Bhushan, Depth-sensing indentation of nanomaterials and nanostructures. Mater. Charact. 78, 1–20 (2013)

    Article  Google Scholar 

  7. S.R. Jian, G.J. Chen, W.M. Hsu, Mechanical properties of Cu2O thin films by nanoindentation. Materials 6(10), 4505–4513 (2013)

    Article  ADS  Google Scholar 

  8. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  ADS  Google Scholar 

  9. C. Ullner, A. Germak, H. Le Doussal, R. Morrell, T. Reich, W. Vandermeulen, Hardness testing on advanced technical ceramics. J. Eur. Ceram. Soc. 21(4), 439–451 (2001)

    Article  Google Scholar 

  10. G.E. Dieter, D.J. Bacon, Mechanical Metallurgy, vol. 3 (McGraw-Hill, New York, 1976)

    Google Scholar 

  11. B. Kaur, M. Bhat, F. Licci, R. Kumar, P.N. Kotru, K.K. Bamzai, Effect of 50 MeV Li3+ ion irradiation on mechanical characteristics of pure and Ga–In substituted M-type strontium hexaferrite. Nucl. Instrum. Methods Phys. Res., Sect. B 222(1–2), 175–186 (2004)

    Article  ADS  Google Scholar 

  12. O. Uzun, T. Karaaslan, M. Keskin, Hardness evaluation of Al–12Si–0.5 Sb melt–spun ribbons. J. Alloys Compd. 358(1–2), 104–111 (2003)

    Google Scholar 

  13. E. Martinez, J. Romero, A. Lousa, J. Esteve, Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings. Appl. Phys. A 77(3), 419–426 (2003)

    Article  ADS  Google Scholar 

  14. U. Kölemen, Analysis of ISE in microhardness measurements of bulk MgB2 superconductors using different models. J. Alloy. Compd. 425(1–2), 429–435 (2006)

    Article  Google Scholar 

  15. O. Uzun, T.U.N.C.A.Y. Karaaslan, M. Gogebakan, M.U.S.T.A.F.A. Keskin, Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt.% Si alloys. J. Alloys Compd. 376(1–2), 149–157

    Google Scholar 

  16. J. Gong, J. Wu, Z. Guan, Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J. Eur. Ceram. Soc. 19(15), 2625–2631 (1999)

    Article  Google Scholar 

  17. J. Gong, Z. Zhao, Z. Guan, H. Miao, Load-dependence of Knoop hardness of Al2O3–TiC composites. J. Eur. Ceram. Soc. 20(12), 1895–1900 (2000)

    Article  Google Scholar 

  18. J. Gong, Y. Li, An energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 35(1), 209–213 (2000)

    Article  ADS  Google Scholar 

  19. M.B. Turkoz, S. Nezir, O. Ozturk, E. Asikuzun, G. Yildirim, C. Terzioglu, A. Varilci, Experimental and theoretical approaches on mechanical evaluation of Y123 system by Lu addition. J. Mater. Sci.: Mater. Electron. 24(7), 2414–2421 (2013)

    Google Scholar 

  20. A. Leenders, M. Mich, H.C. Freyhard, Influence of thermal cycling on the mechanical properties of VGF melt-textured YBCO. Phys. C 279(3–4), 173–180 (1997)

    Article  ADS  Google Scholar 

  21. R. Awad, A.I. Abou Aly, M. Kamal, M. Anas, Mechanical properties of (Cu 0.5 Tl 0.5)-1223 substituted by Pr. J. Supercond. Novel Magn. 24(6), 1947–1956

    Google Scholar 

  22. H. Li, R.C. Bradt, The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28(4), 917–926 (1993)

    Article  ADS  Google Scholar 

  23. L. Sidjanin, D. Rajnovic, J. Ranogajec, E. Molnar, Measurement of Vickers hardness on ceramic floor tiles. J. Eur. Ceram. Soc. 27(2–3), 1767–1773 (2007)

    Article  Google Scholar 

  24. B.R. Lawn, V.R. Howes, Elastic recovery at hardness indentations. J. Mater. Sci. 16(10), 2745–2752 (1981)

    Article  ADS  Google Scholar 

  25. A. Toplu, I. Karaca, U. Kölemen, Calculation of true hardness value of Zn added (BiPb) SrCaCuO superconductor by different models. Ceram. Int. 41(1), 953–960 (2015)

    Article  Google Scholar 

  26. H. Li, R.C. Bradt, The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci. 31(4), 1065–1070 (1996)

    Article  ADS  Google Scholar 

  27. H. Li, Y.H. Han, R.C. Bradt, Knoop microhardness of single crystal sulphur. J. Mater. Sci. 29(21), 5641–5645 (1994)

    Article  ADS  Google Scholar 

  28. G. Myneni, Mechanical Properties of High Purity Niobium-Novel Measurements (No. JLAB-ACC-04-01; DOE/ER/40150-2617). Thomas Jefferson National Accelerator Facility, Newport News, VA (US)

    Google Scholar 

  29. H. Jiang, T.R. Bieler, C. Compton, T.L. Grimm, Proceedings of the 12th International Workshop on RF Superconductivity (Ithaca, New York, Cornell University, 2005)

    Google Scholar 

  30. A. Zamiri, F. Pourboghrat, H. Jiang, T.R. Bieler, F. Barlat, J. Brem, T.L. Grimm, On mechanical properties of the superconducting niobium. Mater. Sci. Eng. A 435, 658–665 (2006)

    Article  Google Scholar 

  31. R.M. Scanlan, A.P. Malozemoff, D.C. Larbalestier, Superconducting materials for large scale applications. Proc. IEEE 92(10), 1639–1654 (2004)

    Article  Google Scholar 

  32. M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater. Sci. Eng. C 62, 852–859 (2016)

    Article  Google Scholar 

  33. G.P. Vedernikov, A.K. Shikov, L.V. Potanina, E.I. Plashkin, E.V. Nikulenkov, I.N. Gubkin, V.Y. Korpusov, Development of fine filament NbTi superconducting strands for magnet systems of fusion reactors. Phys. C 354(1–4), 420–423 (2001)

    Article  ADS  Google Scholar 

  34. H.C. Kanithi, P. Valaris, B.A. Zeitlin, A novel approach to make fine filament superconductors, in Supercollider, vol. 4 (Springer, Boston, MA, 1992), pp. 41–47

    Google Scholar 

  35. Z. Guo, W.H. Warnes, Mechanical behavior of fine filament Nb-Ti as a function of processing (composite superconductors). IEEE Trans. Appl. Supercond. 3(1), 1022–1025 (1993)

    Article  ADS  Google Scholar 

  36. H. Liu, Mechanical properties of Nb–Ti composite superconducting wires (1991)

    Google Scholar 

  37. A. Cremasco, W.R. Osorio, C.M. Freire, A. Garcia, R. Caram, Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochim. Acta 53(14), 4867–4874 (2008)

    Article  Google Scholar 

  38. H. Yu, J.W. Levitan, J. Lu, Calibration of a superconducting transformer by measuring critical current of a NbTi Rutherford cable. Supercond. Sci. Technol. (2021)

    Google Scholar 

  39. A. M. Ferreira, M.A. Martorano, N.B. de Lima, A.F. Padilha, Effects of recovery and recrystallization on microstructure and texture during annealing of a cold deformed superconducting Nb-50 (wt.)% Ti alloy. J. Alloys Comps. 887, 161334 (2021)

    Google Scholar 

  40. P.J. Lee, D.C. Larbalestier, Niobium-titanium superconducting wires: Nanostructures by extrusion and wiredrawing. Wire J. Int. (USA) 36(2), 61–66 (2003)

    Google Scholar 

  41. A.M. Campbell, J.E. Evetts, Flux vortices and transport currents in type II superconductors. Adv. Phys. 50(8), 1249–1449 (2001)

    Article  ADS  Google Scholar 

  42. A. Ballarino, L. Bottura, Targets for R&D on Nb 3 Sn conductor for high energy physics. IEEE Trans. Appl. Supercond. 25(3), 1–6 (2015)

    Article  Google Scholar 

  43. Rossi, L. (2011). LHC upgrade plans: options and strategy (No. IPAC-2011-TUYA02, p. TUYA02)

    Google Scholar 

  44. F. Savary, M. Bajko, B. Bordini, L. Bottura, L. Fiscarelli, J. Fleiter, A.V. Zlobin, Progress on the development of the Nb3Sn 11T dipole for the high luminosity upgrade of LHC. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Google Scholar 

  45. J.L.R. Fernández, J.C. Perez, S.F. Troitino, M. Guinchard, P. Grosclaude, M.D. Crouvizier, F. Savary, Characterization of the mechanical properties of Nb3Sn Coils. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)

    Google Scholar 

  46. P. Ebermann, J. Bernardi, J. Fleiter, F. Lackner, F. Meuter, M. Pieler, E. Eisterer, Irreversible degradation of Nb3Sn Rutherford cables due to transverse compressive stress at room temperature. Supercond. Sci. Technol. 31(6), 065009 (2018)

    Google Scholar 

  47. E. Barzi, C. Franceschelli, I. Novitski, F. Sartori, A.V. Zlobin, Measurements and modeling of mechanical properties of nb 3 sn strands, cables, and coils. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019)

    Article  Google Scholar 

  48. B.A. Glowacki, Niobium aluminide as a source of high-current superconductors. Intermetallics 7(2), 117–140 (1999)

    Article  Google Scholar 

  49. D.R. Bloyer, K.V. Rao, R.O. Ritchie, Resistance-curve toughening in ductile/brittle layered structures: behaviour in Nb/Nb3Al laminates. Mater. Sci. Eng. A 216(1–2), 80–90 (1996)

    Article  Google Scholar 

  50. C.D. Bencher, A. Sakaida, K.V. Rao, R.O. Ritchie, Toughening mechanisms in ductile niobium-reinforced niobium aluminide (Nb/Nb 3 Al) in situ composites. Metall. and Mater. Trans. A. 26(8), 2027–2033 (1995)

    Article  ADS  Google Scholar 

  51. K.S. Chan, Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites. Mater. Sci. Eng., A 329, 513–522 (2002)

    Article  Google Scholar 

  52. L.M. Peng, Synthesis and mechanical properties of niobium aluminide-based composites. Mater. Sci. Eng., A 480(1–2), 232–236 (2008)

    Article  Google Scholar 

  53. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(2), 2621–2628 (2019)

    Article  Google Scholar 

  54. E. Hannachi, Y. Slimani, F.B. Azzouz, A.H.M.E.T. Ekicibil, Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44(15), 18836–18843 (2018)

    Article  Google Scholar 

  55. E. Hannachi, M.A. Almessiere, Y. Slimani, A. Baykal, F.B. Azzouz, AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloys Compd. 812, 152150 (2020)

    Google Scholar 

  56. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F.B. Azzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7-d superconductor. J. Alloys Compd. 852, 157019 (2021)

    Google Scholar 

  57. Y. Slimani, E. Hannachi, A.H.M.E.T. Ekicibil, M.A. Almessiere, F.B. Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloy. Compd. 781, 664–673 (2019)

    Article  Google Scholar 

  58. S.A. Alotaibi, Y. Slimani, E. Hannachi, M.A. Almessiere, G. Yasin, F.O. Al-qwairi, F.B. Azzouz, Intergranular properties of polycrystalline YBa2Cu3O7—δ superconductor added with nanoparticles of WO3 and BaTiO3 as artificial pinning centers. Ceram. Int. (2021)

    Google Scholar 

  59. N. El Ghouch, R. Al-Oweini, K. Habanjar, R. Awad, Comparative study on the effect of adding two transition-metal-substituted polyoxometalates on the mechanical properties of the (Bi, Pb)-2223 superconducting phase. J. Phys. Chem. Solids 151, 109807 (2021)

    Google Scholar 

  60. N. Loudhaief, H. Labiadh, E. Hannachi, M. Zouaoui, M.B. Salem, Synthesis of CdS nanoparticles by hydrothermal method and their effects on the electrical properties of Bi-based superconductors. J. Supercond. Novel Magn. 31(8), 2305–2312 (2018)

    Article  Google Scholar 

  61. S.M. Khalil, Enhancement of superconducting and mechanical properties in BSCCO with Pb additions. J. Phys. Chem. Solids 62(3), 457–466 (2001)

    Article  ADS  Google Scholar 

  62. Anas, M. (2020). The effect of PbF2 doping on the structural, electrical and mechanical properties of (Bi, Pb)–2223 superconductor. Chem. Phys. Lett. 742, 137033

    Google Scholar 

  63. T. Nakashima, K. Yamazaki, S. Kobayashi, T. Kagiyama, M. Kikuchi, S. Takeda, K. Osamura, Drastic improvement in mechanical properties of DI-BSCCO wire with novel lamination material. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)

    Article  Google Scholar 

  64. K. Osamura, S. Machiya, T. Kawasaki, S. Harjo, T. Kato, S. Kobayashi, G. Osabe, Mechanical—electromagnetic property of stainless sheet laminated BSCCO–2223 wires. Mater. Res. Express 6(2), 026001 (2018)

    Google Scholar 

  65. A. Godeke, D.V. Abraimov, E. Arroyo, N. Barret, M.D. Bird, A. Francis, J.M. White, A feasibility study of high-strength Bi-2223 conductor for high-field solenoids. Supercond. Sci. Technol. 30(3), 035011 (2017)

    Google Scholar 

  66. Z.H. Mao, H. Jin, J.G. Qin, F. Liu, C. Dai, Q.B. Hao, C.S. Li, Axial tensile stress–strain characterization of Bi-2212 round wire with different heat treatments. IEEE Trans. Appl. Supercond. 27(6), 1–5 (2017)

    Article  Google Scholar 

  67. Y. Yoshino, A. Iwabuchi, K. Noto, N. Sakai, M. Murakami, Vickers hardness properties of YBCO bulk superconductor at cryogenic temperatures. Phys. C 357, 796–798 (2001)

    Article  ADS  Google Scholar 

  68. S.V. Lubenets, V.D. Natsik, L.S. Fomenko, H.J. Kaufmann, V.S. Bobrov, A.N. Izotov, Influence of oxygen content and structural defects on low-temperature mechanical properties of high-temperature superconducting single crystals and ceramics. Low Temp. Phys. 23(8), 678–683 (1997)

    Article  ADS  Google Scholar 

  69. N. Güçlü, U. Kölemen, O. Uzun, S.E.L.A.H.A.T.T.İN. Çelebi, Work of indentation approach for investigation of mechanical properties of YBCO bulk superconductor at cryogenic temperatures. Phys. C 433(1–2), 115–122 (2005)

    Article  ADS  Google Scholar 

  70. A. Matsumuro, K. Kasumi, U. Mizutani, M. Senoo, Superconducting and mechanical properties of YBCO/Ag composites fabricated at high pressures up to 5.4 GPa. J. Mater. Sci. 26(3), 737–742

    Google Scholar 

  71. A.K. Najem, Physical and electrochemical properties of (Bi, Pb)-2223 prepared at different pressures (2020)

    Google Scholar 

  72. U. Kölemen, S.E.L.A.H.A.T.T.İN. Çelebi, Y. Yoshino, A. Öztürk, Mechanical properties of YBCO and YBCO+ ZnO polycrystalline superconductors using Vickers hardness test at cryogenic temperatures. Phys. C 406(1–2), 20–26 (2004)

    Article  ADS  Google Scholar 

  73. T.A.K.U.Y.A. Takematsu, R.U.X.I.N. Hu, T.O.M.O.A.K.I. Takao, Y.O.S.H.I.N.O.R.I. Yanagisawa, H. Nakagome, D. Uglietti, H. Maeda, Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation. Phys. C: Supercond. Appl. 470(17–18), 674–677 (2010)

    Article  ADS  Google Scholar 

  74. Y. Yanagisawa, H. Nakagome, T. Takematsu, T. Takao, N. Sato, M. Takahashi, H. Maeda, Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance. Phys. C: Supercond. Appl. 471(15–16), 480–485 (2011)

    Article  ADS  Google Scholar 

  75. U.P. Trociewitz, M. Dalban-Canassy, M. Hannion, D.K. Hilton, J. Jaroszynski, P. Noyes, D.C. Larbalestier, 35.4 T field generated using a layer-wound superconducting coil made of (RE) Ba2Cu3O7−x (RE= rare earth) coated conductor. Appl. Phys. Lett. 99(20), 202506 (2011)

    Google Scholar 

  76. S. Hahn, D.K. Park, J. Bascuñán, Y. Iwasa, HTS pancake coils without turn-to-turn insulation. IEEE Trans. Appl. Supercond. 21(3), 1592–1595 (2010)

    Article  ADS  Google Scholar 

  77. S. Matsumoto, T. Kiyoshi, A. Otsuka, M. Hamada, H. Maeda, Y. Yanagisawa, H. Suematsu, Generation of 24 T at 4.2 K using a layer-wound GdBCO insert coil with Nb3Sn and Nb–Ti external magnetic field coils. Supercond. Sci. Technol. 25(2), 025017 (2012)

    Google Scholar 

  78. M. Tomita, M. Murakami, K. Yoneda, Improvements in the mechanical properties of bulk YBCO superconductors with carbon fibre fabrics. Supercond. Sci. Technol. 15(5), 803 (2002)

    Article  ADS  Google Scholar 

  79. G. Wang, H. Ding, R. He, Z. Huang, H. Liu, J. Qin, Y. Tan, A new method for avoiding critical current degradation of YBCO coils using ice impregnation. Supercond. Sci. Technol. 32(10), 105011 (2019)

    Google Scholar 

  80. M. Anas, S. Ebrahim, I.G. Eldeen, R. Awad, A.I. Abou-Aly, Effect of single and multi-wall carbon nanotubes on the mechanical properties of Gd-123 superconducting phase. Chem. Phys. Lett. 686, 34–43 (2017)

    Article  ADS  Google Scholar 

  81. N. Hameed, S.P. Thomas, R. Abraham, S. Thomas, Morphology and contact angle studies of poly (styrene-co-acrylonitrile) modified epoxy resin blends and their glass fibre reinforced composites. Express Polym Lett 1(6), 345–355 (2007)

    Article  Google Scholar 

  82. S. Yu, P. Hing, X. Hu, Dielectric properties of polystyrene–aluminum-nitride composites. J. Appl. Phys. 88(1), 398–404 (2000)

    Article  ADS  Google Scholar 

  83. C.B. Yoon, S.H. Lee, S.M. Lee, Y.H. Koh, H.E. Kim, K.W. Lee, Piezoelectric multilayer ceramic/polymer composite transducer with 2–2 connectivity. J. Am. Ceram. Soc. 89(8), 2509–2513 (2006)

    Article  Google Scholar 

  84. R. Abraham, P. Thomas, S., Kuryan, S., Issac, J., Nandakumar, K., & Thomas, S., Structural and mechanical properties of YBCO-polystyrene composites. J. Appl. Polym. Sci. 118(2), 1027–1041 (2010)

    Google Scholar 

  85. A.I. Kupchishin, B.G. Taipova, N.A. Voronova, Study of the influence of filler on the mechanical properties of composites based on polyimide, in IOP Conference Series: Materials Science and Engineering, vol. 168, no. 1 (IOP Publishing, 2017), p. 012015

    Google Scholar 

  86. T. Hlásek, K.Y. Huang, J. Esnoz-Larraya, V. Plecháček, J. Durrell, I. Valiente-Blanco, D.A. Cardwell, Enhanced mechanical properties of single-domain YBCO bulk superconductors processed with artificial holes. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019)

    Article  Google Scholar 

  87. R. Cloots, T. Koutzarova, J.P. Mathieu, M. Ausloos, From RE-211 to RE-123. How to control the final microstructure of superconducting single-domains. Superconduct. Sci. Technol. 18(3), R9 (2004)

    Google Scholar 

  88. D.K. Namburi, K. Singh, K.Y. Huang, S. Neelakantan, J.H. Durrell, D.A. Cardwell, Improved mechanical properties through recycling of Y-Ba-Cu-O bulk superconductors. J. Eur. Ceram. Soc. 41(6), 3480–3492 (2021)

    Article  Google Scholar 

  89. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Google Scholar 

  90. T. Machi, S. Shimura, N. Koshizuka, M. Murakami, Fabrication of MgB2 superconducting wire by in situ PIT method. Phys. C 392, 1039–1042 (2003)

    Article  ADS  Google Scholar 

  91. J.G. Noudem, Y. Xing, P. Bernstein, R. Retoux, M. Higuchi, S.S. Arvapalli, M. Murakami, Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering. J. Am. Ceram. Soc. 103(11), 6169–6175 (2020)

    Article  Google Scholar 

  92. G. Giunchi, T. Cavallin, P. Bassani, S. Guicciardi, The mechanical properties of the MgB 2 bulk materials obtained by reactive liquid Mg infiltration, in AIP Conference Proceedings, vol. 986, no. 1 (American Institute of Physics, 2008)

    Google Scholar 

  93. N. Kumar, S. Das, C. Bernhard, G.D. Varma, Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26(9), 095008 (2013)

    Google Scholar 

  94. M. Muralidhar, K. Inoue, M.R. Koblischka, A. Murakami, M. Murakami, Effects of silver addition on critical current densities and mechanical properties in bulk MgB2. Adv. Eng. Mater. 17(6), 831–838 (2015)

    Article  Google Scholar 

  95. K.M. Elsabawy, Narrow range of hafnium doping for promoted mechanical properties and critical current density (Jc) values of Mg 1–x Hf x B 2 superconductor. J. Supercond. Novel Magn. 24(6), 1853–1861 (2011)

    Article  Google Scholar 

  96. N. Kaya, Ş. Çavdar, Ö. Öztürk, H. Ada, H. Koralay, Investigation of microhardness properties of the multi-walled carbon nanotube additive MgB2 structure by using the vickers method. Cryogenics 116, 103295 (2021)

    Google Scholar 

  97. A.B. Abrahamsen, D. Liu, N. Magnusson, A. Thomas, Z. Azar, E. Stehouwer, H. Polinder, Comparison of levelized cost of energy of superconducting direct drive generators for a 10-MW offshore wind turbine. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Article  Google Scholar 

  98. P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Reissner, Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing. Supercond. Sci. Technol. 23(6), 065010 (2010).

    Google Scholar 

  99. P. Kovac, L. Kopera, Electromechanical properties of filamentary MgB2 wires. IEEE Trans. Appl. Supercond. 22(1), 8400106–8400106 (2011)

    Article  Google Scholar 

  100. I. Hušek, P. Kováč, Mechanical properties, interface reactions and transport current densities of multi-core MgB2/Ti/Cu/SS wire. Supercond. Sci. Technol. 23(7), 075012 (2010)

    Google Scholar 

  101. A.E. Ozmetin, O. Sahin, E. Ongun, M. Kuru, Mechanical characterization of MgB2 thin films using nanoindentation technique. J. Alloy. Compd. 619, 262–266 (2015)

    Article  Google Scholar 

  102. H. Hosono, Layered iron pnictide superconductors: discovery and current status. J. Phys. Soc. Jpn. 77(Suppl. C), 1–8 (2008)

    Google Scholar 

  103. C. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, C. Dong, K. Watanabe, Critical current density and microstructure of iron sheathed multifilamentary Sr1−xKxFe2As2/Ag composite conductors. J. Appl. Phys. 118(20), 203909 (2015)

    Google Scholar 

  104. G. Xu, X. Zhang, C. Yao, H. Huang, Y. Zhu, L. Li, Y. Ma, Effects of different directional rolling on the fabrication of 7-filament Ba1-xKxFe2As2 tapes. Phys. C: Supercond. Appl. 561, 30–34 (2019)

    Article  ADS  Google Scholar 

  105. H. Huang, C. Yao, Y. Zhu, X. Zhang, C. Dong, D. Wang, Y. Ma, Influences of tape thickness on the properties of Ag-Sheathed Sr 1–x K x Fe 2 As 2 superconducting tapes. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2017)

    Google Scholar 

  106. S. Liu, C. Yao, H. Huang, C. Dong, W. Guo, Z. Cheng, Y. Ma, Enhancing transport performance in 7-filamentary Ba0. 6K0. 4Fe2As2 wires and tapes via hot isostatic pressing. Phys. C: Supercond. Appl. 585, 1353870 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hannachi, E., Slimani, Y. (2022). Mechanical Properties of Superconducting Materials. In: Slimani, Y., Hannachi, E. (eds) Superconducting Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1211-5_4

Download citation

Publish with us

Policies and ethics