Skip to main content

Extracellular Polymeric Substances in Textile Industry

  • Chapter
  • First Online:
Sustainable Approaches in Textiles and Fashion

Abstract

Different microorganisms secrete extracellular polymeric substances that are also known as exopolymeric substances, exopolymers, extracellular polysaccharides, and exopolysaccharides. Extracellular polymeric substances that protect the microorganisms from the environmental stresses are mainly composed of lipids, proteins, polysaccharides, and nucleic acids. They have unique characteristics with functional properties such as addhesion, binding activity, water retention, sorption and so on. The extracellular polymeric substances are valuable products because of their various applications in different industries about textile, pharmaceutical, food, agriculture, cosmetic, and environment. The extracellular polymeric substances are valuable for textile industry as being sustainable resource as well as environmental friendly properties. In this chapter, we have evaluated extracellular polymeric substances followed by the main functions and applications of the extracellular polymeric substances. Moreover, we have emphasized the applications for various extracellular polymeric substances in textile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smelser NJ (2013) Social change in the industrial revolution: n application of theory to the british cotton industry. Routledge

    Google Scholar 

  2. Nayak R, Padhye R (2015) Introduction: the apparel industry. Woodhead Publishing, Garment Manufacturing Technology, pp 1–17

    Google Scholar 

  3. Amaral MCD, Zonatti WF, Silva KLD, Karam Junior D, Amato Neto J, Baruque-Ramos J (2018) Industrial textile recycling and reuse in Brazil: case study and considerations concerning the circular economy. Gest Prod 25:431–443

    Google Scholar 

  4. Leal Filho W, Ellams D, Han S, Tyler D, Boiten VJ, PaΩ CÇco A, Moora H, Balogun A-L (2019) A review of the socio-economic advantages of textile recycling. J Cleaner Prod 218:10–20

    Google Scholar 

  5. Ranasinghe L, Jayasooriya VM (2021) Ecolabelling in textile industry: a review. Resour Environ Sustain, 100037

    Google Scholar 

  6. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

    Article  CAS  Google Scholar 

  7. Xie J-H, Jin M-L, Morris GA, Zha X-Q, Chen H-Q, Yi Y, Li J-E, Wang Z-J, Gao J, Nie S-P, Shang P, Xie M-Y (2016) Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutri 56:S60–S84

    Article  CAS  Google Scholar 

  8. Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183(235):91–101

    Article  CAS  Google Scholar 

  9. Albuquerque PBS, Oliveira WF, Silva PMS, Correira MTS, Kennedy JF, Coelho LCBB (2020) Epiphanies of well-known and newly discovered macromolecular carbohydrates—a review. Int J Biol Macromol 156:51–66

    Article  CAS  Google Scholar 

  10. Angelin J, Kavitha M, Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromole 162:853–865

    Google Scholar 

  11. Ziadi M, Bouzaiene T, M’Hir S, Zaafouri K, Mokhtar F, Hamdi M, Boisset-Helbert C (2018) Evaluation of the efficiency of ethanol precipitation and ultrafiltration on the purification and characteristics of exopolysaccharides produced by three lactic acid bacteria. Biomed Res Int 2018:1896240

    Article  CAS  Google Scholar 

  12. Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    Google Scholar 

  13. Soumya MP, Sasikumar K, Pandey A, Nampoothiri KM (2019) Cassava starch hydrolysate as sustainable carbon source for exopolysaccharide production by Lactobacillus plantarum. Bioresour Technol Rep 6:85–88

    Article  Google Scholar 

  14. Zhang Y, Fan W, Sun Y, Chen W, Zhang Y (2021) Application of antiviral materials in textiles: a review. Nanotechnol Rev

    Google Scholar 

  15. De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    Article  Google Scholar 

  16. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  Google Scholar 

  17. Nwodo UU, Green E, Okoh AI (2012) Bacterial Exopolysaccharides: functionality and prospects, 14002–14015

    Google Scholar 

  18. Majee SB, Avlani D, Biswas GR (2017) Rheol Behav Pharm Appl Bacterial Exopolysaccharides 7:224–232

    CAS  Google Scholar 

  19. Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol 64:1179–1186

    Article  CAS  Google Scholar 

  20. Siddharth T, Sridhar P, Vinila V, Tyagi RD (2021) Environmental applications of microbial extracellular polymeric substance (EPS): a review. J Environ Manage 287:112307

    Article  CAS  Google Scholar 

  21. Venkatachalam D, Kaliappa S (2021) Superabsorbent polymers: a state-of-art review on their classification, synthesis, physicochemical properties, and applications. Rev Chem Eng

    Google Scholar 

  22. Gombotz WR, Wee SF (1998) Protein release from alginate matrices. AdvDrug Delivery Rev 31:267–285

    Article  CAS  Google Scholar 

  23. Lee KY, Mooneya DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37(2012):106–126

    Article  CAS  Google Scholar 

  24. Islam S, Butola BS (2019) Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int J Biol Macromol 121:905–912

    Article  CAS  Google Scholar 

  25. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications-A Review. J Food Sci Technol 51(3):409–418

    Article  CAS  Google Scholar 

  26. Osmalek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340

    Article  CAS  Google Scholar 

  27. Chang I, Lee M, Tran ATP, Lee S, Kwon YM, Im J, Cho GC (2020) Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24:100385

    Article  Google Scholar 

  28. Huang J, Kogbara RB, Hariharan N, Masad EA, Little DN (2021) A state-of-the-art review of polymers used in soil stabilization. Constr Build Mater 305:124685

    Article  CAS  Google Scholar 

  29. Kato T, Katsuki T, Takahashi A (1984) Static and dynamic solution properties of pullulan in a dilute-solution. Macromolecules 17:1726–1730

    Article  CAS  Google Scholar 

  30. Kato T, Okamoto T, Tokuya T, Takahashi A (1982) Solution properties and chain flexibility of pullulan in aqueous solution. Biopolymers 21:1623–1633

    Article  CAS  Google Scholar 

  31. Nishinari K, Kohyama K, Williams PA, Philips GO, Burchard W, Ogino K (1984) Solution properties of pullulan. Macromolecules 24:5590–5593

    Article  Google Scholar 

  32. Kawahara K, Ohta K, Miyamoto H, Nakamura S (1984) Preparation and solution properties of pullulan fractions as standard samples for water-soluble polymers. Carbohyd Polym 4:335–356

    Article  CAS  Google Scholar 

  33. Nordmeier E (1993) Static and dynamic light-scattering solution behavior of pullulan and dextran in comparison. J Phys Chem 97:5770–5785

    Article  CAS  Google Scholar 

  34. Sugumaran KR, Ponnusami V (2017) Review on production, downstream processing and characterization of microbial pullulan. Carboh Polym 173:573–591

    Article  CAS  Google Scholar 

  35. Bachelder EM, Pino EN, Ainslie KM (2017) Acetalated dextran: a tunable and acid-labile biopolymer with facile synthesis and a range of applications. Chem Rev 117(3):1915–1926

    Article  CAS  Google Scholar 

  36. Hu Q, Lu Y, Luo Y (2021) Recent advances in dextran-based drug delivery systems: from fabrication strategies to applications. Carbohyd Polym 264:117999

    Article  CAS  Google Scholar 

  37. Lee H, Han Y, Park JH (2022) Enhanced deposition of Fe(III)-tannic acid complex nanofilm by Fe(III)-embedded dextran nanocoating. Appl Surf Sci 573:151598

    Article  CAS  Google Scholar 

  38. Shukla A, Mehta K, Parmar J, Pandya J, Saraf M (2019) Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. Eur Polymer J 119:298–310

    Article  CAS  Google Scholar 

  39. Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Google Scholar 

  40. Wingender J, Th R, Neu HC (1999) Flemming, microbial extracellular Polymeric Substances: Characterization. Struct Funct 279

    Google Scholar 

  41. Kodali VP, Das S, Sen R (2009) An exopolysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity food research international an exopolysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity. Food Res Int 42:695–699

    Article  CAS  Google Scholar 

  42. Torino MI, De Valdez GF, Mozzi F (2015) Biopolymers from lactic acid bacteria. Novel Appl Foods Beverages 6:1–16

    Google Scholar 

  43. Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549

    Article  CAS  Google Scholar 

  44. Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  45. Salehizadeh H, Yan N, Ramin Farnood R (2018) Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 36(1):92–119

    Article  CAS  Google Scholar 

  46. Draget KI (2009) Alginates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, p 379e95

    Google Scholar 

  47. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  Google Scholar 

  48. Smidsrod O, Skjak-Bræk G (1990) Alginate as immobilization matrix for cells. Trend Biotechnol 8:71–78

    Article  CAS  Google Scholar 

  49. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  CAS  Google Scholar 

  50. Sand A, Yadav M, Mishra DK, Behari K (2010) Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydr Polym 80:1147–1154

    Article  CAS  Google Scholar 

  51. Zhao YX, Gao BY, Wang Y, Shon HK, Bo XW, Yue QY (2012) Coagulation performance and floc characteristics with polyaluminum chloride using sodium alginate as coagulant aid: a preliminary assessment. Chem Eng J 183:387–394

    Article  CAS  Google Scholar 

  52. Yuan YH, Jia DM, Yuan YH (2013) Chitosan/sodium alginate, a complex flocculating agent for sewage water treatment. Adv Mater Res 641–642:101–114

    Article  CAS  Google Scholar 

  53. Rani P, Mishra S, Sen G (2013) Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: its application as flocculant. Carbohydr Polym 91:686–692

    Article  CAS  Google Scholar 

  54. Diaz-Barrera A, Gutierrez J, Martinez F, Altamirano C (2014) Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions. Bioprocess Biosyst Eng 37:1133–1140

    Article  CAS  Google Scholar 

  55. Sun D, Zhou L, Wu Q, Yang S (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol Mater Sci Ed 22(4):677–680

    Google Scholar 

  56. Ying W, Huifang L, Xiaomin F, Yuanqing X, Yanrong R, Tao D (2013) Preparation and characterization of a biodegradable poly (malic-co-butanediol) elastomer. China Elastomerics (1):4

    Google Scholar 

  57. Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S (2022) Preparation and applications of chitosan and cellulose composite materials. J Environ Manage 301:113850

    Article  CAS  Google Scholar 

  58. Prasad S, Singh A, Korres NE, Rathore D, Sevda S, Pant D (2020) Sustainable utilization of crop residues for energy generation: a life cycle assessment (LCA) perspective. Bioresour Technol 303:122964

    Article  CAS  Google Scholar 

  59. Alavi M (2019) Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers 19(1):103–119

    Article  CAS  Google Scholar 

  60. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbüchel A, Doi Y (eds), Biotechnology of polymer: from Synthesis to patents. Wiley-VCH, Weinheim, Germany, pp 381–434

    Google Scholar 

  61. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102

    Article  CAS  Google Scholar 

  62. Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911

    Article  CAS  Google Scholar 

  63. Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N (2022) Insights on sustainable approaches for production and applications of value added products. Chemosphere 286(1):131623

    Article  CAS  Google Scholar 

  64. Kalia S, Choudhury AR (2019) Synthesis and rheological studies of a novel composite hydrogel of xanthan, gellan and pullulan. Int J Biol Macromol 137:475–482

    Article  CAS  Google Scholar 

  65. Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587

    Article  CAS  Google Scholar 

  66. Moshaf S, Hamidi-Esfahani Z, Azizi MH (2011) Optimization of conditions for xanthan gum production from waste date in submerged fermentation. World Acad Sci Eng Technol 57:521–524

    Google Scholar 

  67. Rončević Z, Grahovac DS, Vučurović DJ, Dodić J (2019) Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: bioprocess modelling and optimization. Food Bioprod Process 117:113–125

    Google Scholar 

  68. Gondim TS, Pereira RG, Fiaux SB (2019) Xanthan gum production by Xanthomonas axonopodispv. Mangiferae indicae from glycerin of biodiesel in different media and addition of glucose. Acta Sci Biol Sci 41:e43661–e43661

    Google Scholar 

  69. Eren NM, Santos PHS, Campanella O (2015) Mechanically modified xanthan gum: rheology and polydispersity aspects. Carbohydr Polym 134:475–484

    Article  CAS  Google Scholar 

  70. Kang M, Oderinde O, Liu S, Huang Q, Ma W, Yao F, Fu G (2019) Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr Polym 203:139–147

    Article  CAS  Google Scholar 

  71. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    Article  Google Scholar 

  72. Khachatoorian R, Petrisor IG, Kwan C-C, Yen TF (2003) Biopolymer plugging effect: laboratory-pressurized pumping flow studies. J Petrol Sci Eng 38:13–21

    Article  CAS  Google Scholar 

  73. Bouazza A, Gates W, Ranjith P (2009) Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 59:71–72

    Article  Google Scholar 

  74. Chang I, Im J, Prasidhi AK, Cho G-C (2015) Effects of xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72

    Article  Google Scholar 

  75. Ayeldeen MK, Negm AM, El Sawwaf MA (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian J Geosci 9:1–13

    Article  CAS  Google Scholar 

  76. Latifi N, Horpibulsuk S, Meehan CL, Majid MZA, Tahir MM, Mohamad ET (2017) Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. J Mater Civ Eng 29:04016204

    Article  Google Scholar 

  77. Qureshi MU, Chang I, Al-Sadarani K (2017) Strength and durability characteristics of biopolymer-treated desert sand. Geomech Eng 12:785–801

    Article  Google Scholar 

  78. Cabalar A, Wiszniewski M, Skutnik Z (2017) Effects of Xanthan Gum biopolymer on the permeability odometer, unconfined compressive and triaxial shear behavior of a sand. Soil Mech Found Eng 54:356–361

    Article  Google Scholar 

  79. Lee S, Chang I, Chung M-K, Kim Y, Kee J (2017) Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech Eng 12:831–847

    Article  Google Scholar 

  80. Im J, Tran ATP, Chang I, Cho G-C (2017) Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) tests. Geomech Eng 12:815–830

    Article  Google Scholar 

  81. Lee S, Im J, Cho G-C, Chang I (2019) Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands. Geomech Eng 17:445–452

    Google Scholar 

  82. Chang I, Kwon Y-M, Im J, Cho G-C (2019) Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation. Can Geotech J 56:1206–1213

    Article  CAS  Google Scholar 

  83. Kwon Y-M, Ham S-M, Kwon T-H, Cho G-C, Chang I (2020) Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Géotech Lett 10:1–7

    Article  Google Scholar 

  84. Carolan G, Catley BJ, McDougal FG (1983) The location of tetrasaccharide units in pullulan. Carbohydr Res 114:237–243

    Google Scholar 

  85. Bauer R (1938) Physiology of dematium pullulans de bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt 2(98):133–167

    Google Scholar 

  86. Okada K, Yoneyama M, Mandai T, Aga H, Sakai S, Ichikawa T (1990) Digestion and fermentation of pullulan. J Japan Soc Nutr Food Sci 43:23–29

    Article  CAS  Google Scholar 

  87. Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S (2020) Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 161:1189–1205

    Article  CAS  Google Scholar 

  88. Singh RS, Kaur N, Kennedy JF (2015) Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohyd Polym 123:190–207

    Article  CAS  Google Scholar 

  89. Sutherland IW (1993) Xanthan. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman & Hall, London, pp 363–388

    Chapter  Google Scholar 

  90. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohyd Polym 73(4):515–531

    Google Scholar 

  91. Singh RS, Saini GK, Kennedy JF (2009) Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohyd Polym 78(1):89–94

    Google Scholar 

  92. Singh RS, Kaur N, Rana V, Kennedy JF (2016) Recent insights on applications of pullulan in tissue engineering. Carbohyd Polym 153:455–462

    Article  CAS  Google Scholar 

  93. Ganie SA, Rather LJ, Li Q (2021) A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydr Polym Technol Appl 2:100115

    Google Scholar 

  94. Lazaridou A, Roukas T, Biliaderis CG, Vaikous H (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb Technol 31(1–2):122–132

    Article  CAS  Google Scholar 

  95. Viveka R, Varjani S, Ekambaram E (2021) Valorization of cassava waste for pullulan production by Aureobasidium pullulans MTCC 1991. Energy Environ 32(6):1086–1102

    Article  CAS  Google Scholar 

  96. Barnett C, Smith A, Scanlon B, Israilides CJ (1999) Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydr Polym 38:203–209

    Article  CAS  Google Scholar 

  97. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44

    Article  CAS  Google Scholar 

  98. Duarte ML, Ferreira MC, Marvão MR, Rocha J (2002) An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 31(1):1–8

    Article  CAS  Google Scholar 

  99. Zuo D, Tao Y, Chen Y (2009) Preparation and characterization of blend membranes of polyurethane and superfine chitosan powder. Polym Bull 62:713–725

    Article  CAS  Google Scholar 

  100. Dina R, Hans-Georg S (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2(2):186–201

    Article  CAS  Google Scholar 

  101. Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M (2016) Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int J Biol Macromole Part A 93:145–155

    Article  CAS  Google Scholar 

  102. Rinaudo M, Milas M (1978) Polyelectrolyte behaviour of a bacterial polysaccharide from Xanthomonas campestris: comparison with carboxymethylcellulose. Biopolymers 17:2663–2678

    Article  CAS  Google Scholar 

  103. Li Q, Zhou JP, Zhang LN (2009) Structure and properties of the nano-composite films of chitosan reinforced with cellulose whiskers. J Polym.Sci Part B Polym Phys 47:1069–1077

    Article  CAS  Google Scholar 

  104. Kumar A, Vimal A, Kumar A (2016) Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91:615–622

    Article  CAS  Google Scholar 

  105. Khalil HA, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Sarker MZI, Fazita MN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836

    Article  CAS  Google Scholar 

  106. Alavi M, Rai M (2019) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol 103(21):8669–8676

    Article  CAS  Google Scholar 

  107. Yang J, Dahlström C, Edlund H, Lindman B, Norgren M (2019) pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan. Cellulose 26(6):3763–3776

    Article  CAS  Google Scholar 

  108. Costa EM, Silva S, MarianaVeiga PatriciaBaptista, Tavaria FK, Pintado ME (2021) Textile dyes loaded chitosan nanoparticles: characterization, biocompatibility and staining capacity. Carbohyd Polym 251:117120

    Article  CAS  Google Scholar 

  109. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69

    Article  CAS  Google Scholar 

  110. Hirano S, Kitaura S, Sasaki N, Sakaguchi H, Sugiyama M, Hashimoto K et al (1996) Chitin biodegradation and wound healing in tree bark tissues. J Environ Polym Degrad 4:261–265

    Article  CAS  Google Scholar 

  111. Linden JC, Stoner RJ, Knutson KW, Gardner-Hughes CA (2000) Organic disease control elicitors. Agro Food Ind Hi Tech 11:32–34

    CAS  Google Scholar 

  112. Liu XD, Tokura S, Haruki M, Nishi N, Sakairi N (2002) Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohydr Polym 49:103–108

    Article  CAS  Google Scholar 

  113. Cheung WH, Ng JCY, McKay G (2003) Kinetic analysis of the sorption of copper(II) ions on chitosan. J Chem Technol Biotechnol 78:562–571

    Article  CAS  Google Scholar 

  114. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  115. Pasteur L (1861) On the viscous fermentation and the butyrous fermentation. Bull Soc Chim Fr 11:30–31

    Google Scholar 

  116. Jeanes A, Haynes WC, Wilham C, Rankin JC, Melvin E, Austin MJ, Cluskey J, Fisher B, Tsuchiya H, Rist C (1954) Characterization and classification of dextrans from ninety-six strains of bacteria1b. J Am Chem Soc 76(20):5041–5052

    Article  CAS  Google Scholar 

  117. Pini R, Canarutto S, Guidi GV (1994) Soil microaggregation as influenced by uncharged organic conditioners. Commun Soil Sci Plant Anal 25:2215–2229

    Article  CAS  Google Scholar 

  118. Fechner A, Knoth A, Scherze I, Muschiolik G (2007) Stability and release properties of double-emulsions stabilised by caseinate–dextran conjugates. Food Hydrocolloids 21:943–952

    Article  CAS  Google Scholar 

  119. Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93(2):525–531

    Article  CAS  Google Scholar 

  120. Li H, Yang H, Xua J, Gaoa Z, Wua J, Zhub L, Zhan X (2022) Novel amphiphilic carboxymethyl curdlan-based pH responsive micelles for curcumin delivery. LWT2, 153:112419

    Google Scholar 

  121. Popescu I, Pelin IM, Ailiesei GL, Ichim DL, Suflet DM (2019) Amphiphilic polysaccharide based on curdlan: synthesis and behaviour in aqueous solution. Carbohyd Polym 224:115157

    Article  CAS  Google Scholar 

  122. Cai Z, Zhang H (2021) The effect of carboxymethylation on the macromolecular conformation of the (1 → 3)-β -D-glucan of curdlan in water. Carbohyd Polym 272:118456

    Article  CAS  Google Scholar 

  123. Lehtovaara BC, Gu FX (2011) Pharmacological, structural, and drug delivery properties and applications of 1,3-beta-glucans. J Agric Food Chem 59(13):6813–6828

    Article  CAS  Google Scholar 

  124. Cai Z, Zhang H (2017) Recent progress on curdlan provided by functionalization strategies. Food Hydrocolloids 68:128–135

    Article  CAS  Google Scholar 

  125. D’Cunha NJ, Misra D, Thompson AM (2009) Experimental investigation of the applications of natural freezing and curdlan biopolymer for permeability modification to remediate DNAPL contaminated aquifers in Alaska. Cold Reg Sci Technol 59:42–50

    Article  Google Scholar 

  126. Ivanov V, Stabnikov V (2017) Bioclogging and biogrouts. In: Construction biotechnology. Springer, Singapore, pp 139–178

    Google Scholar 

  127. Yildiz H, Karatas N (2018) Microbial exopolysaccharides: resources and bioactive properties. Process Biochem 72:41–46

    Article  CAS  Google Scholar 

  128. Deepak V, Ram Kumar Pandian S, Sivasubramaniam SD, Nellaiah H, Sundar K (2016a) Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. Prep Biochem Biotechnol 46(3):288–297

    Google Scholar 

  129. Deepak V, Ramachandran S, Balahmar RM, Pandian SRK, Sivasubramaniam SD, Nellaiah H, Sundar K (2016b) In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cellular Dev Biol Anim 52(2):163–173

    Google Scholar 

  130. Patel AK, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Polysaccharides from probiotics: new developments as food additives. Food Technol Biotechnol 48(4):451–463

    CAS  Google Scholar 

  131. Rehm BH (2010) Bacterial polymers: Biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578

    Article  CAS  Google Scholar 

  132. Saadat YR, Khosroushahi AY, Gargari BP, A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89

    Google Scholar 

  133. Baba M, Snoeck R, Pauwels R, de Clercq E (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Ch 32(11):1742–1745

    Article  CAS  Google Scholar 

  134. Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6(1):8–13

    Article  CAS  Google Scholar 

  135. Gugliandolo C, Spanò A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appl Microbiol 116(4):1028–1034

    Article  CAS  Google Scholar 

  136. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465

    Article  CAS  Google Scholar 

  137. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  138. Li J, He J, Huang Y (2017) Role of alginate in antibacterial finishing of textiles. Int J Biol Macromol

    Google Scholar 

  139. Ghimici L, Constantin M (2020) A review of the use of pullulan derivatives in wastewater purification. React Funct Polym 149:104510

    Article  CAS  Google Scholar 

  140. Choudhury AR, Saluja P, Prasad GS (2011) Pullulan production by an osmotolerant Aureobasidium pullulans RBF-4A3 isolated from flowers of Caesulia axillaris. Carbohydr Polym 83:1547–1552

    Article  CAS  Google Scholar 

  141. Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52(1):3–12

    Article  CAS  Google Scholar 

  142. Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100(3):1121–1135

    Article  CAS  Google Scholar 

  143. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1(6):246–253

    Article  CAS  Google Scholar 

  144. Lalov IG, Guerginov II, Krysteva MA, Fartsov K (2000) Treatment of waste water from distilleries with chitosan. Water Res 34(5):1503–1506

    Article  CAS  Google Scholar 

  145. Shao J, Yang Y, Zhong Q (2003) Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polym Degrad Stab 82:395–398

    Article  CAS  Google Scholar 

  146. Giri Dev VR, Neelkandan R, Sudha N, Shamugasundaram OL, Nadaraj RN (2005) Chitosan—a polymer with wider applications. Text Mag 7:83–86

    Google Scholar 

  147. Ham-Pichavant F, Sèbe G, Pardon P, Coma V (2005) Fat resistance properties of chitosan-based paper packaging for food applications. Carbohyd Polym 61(3):259–265

    Article  CAS  Google Scholar 

  148. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Controlled Release 103:643–653

    Article  CAS  Google Scholar 

  149. Li J, Gong Y, Zhao N (2005) Preparation of N-butyl chitosan and study of its physical and biological properties. J Appl Polym Sci 98:1016–1024

    Article  CAS  Google Scholar 

  150. Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131

    Google Scholar 

  151. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  152. Islam S, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52(15):5245–5260

    Article  CAS  Google Scholar 

  153. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667

    Article  CAS  Google Scholar 

  154. Yuen S (1974) Pullulan and its applications. Process Biochem 9:7–22

    CAS  Google Scholar 

  155. Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL (2010) Modified Gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31:7494–7502

    Article  CAS  Google Scholar 

  156. Sun X, Zhou M, Sun Y (2015) Classification of textile fabrics by use of spectroscopy-based pattern recognition methods. Spectrosc Lett 49(2):1–31

    Google Scholar 

  157. Founda A, Hassan SED, Salem SS, Shaheen TI (2018) In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    Article  CAS  Google Scholar 

  158. Roy M, Sen P, Pal P (2020) An integrated green management model to improve environmental performance of textile industry towards sustainability. J Clean Prod 271:122656

    Article  CAS  Google Scholar 

  159. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241

    Article  CAS  Google Scholar 

  160. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  CAS  Google Scholar 

  161. Shah TV, Vasava DV (2019) A glimpse of biodegradable polymers and their biomedical applications. e-Polymers

    Google Scholar 

  162. Gupta B, Agarwal R, Alam MS (2010) Textile-based smart wound dressings Indian. J Fibre Text Res 35:174–187

    CAS  Google Scholar 

  163. Mi F-L, Shyu S-S, Wu Y-B, Lee S-T, Shyong J-Y, Huang R-N (2001) Biomaterials, 22:165

    Google Scholar 

  164. Retegi A, Gabilondo N, Pena C, Zuluaga R (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669

    Article  CAS  Google Scholar 

  165. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  Google Scholar 

  166. Eichhorn S, Hearle JWS, Jaffe M et al (2009) Handbook of textile fibre structure: natural, regenerated, inorganic and specialist fibres. Woodhead Publishing Limited, UK

    Book  Google Scholar 

  167. Woodings C (2001) Regenerated cellulose fibres. The Textile Institute CRC, UK

    Google Scholar 

  168. Shen L, Patel MK (2010) Life cycle assessment of manmade cellulose fibres. Lenzinger Ber 88:1–59

    CAS  Google Scholar 

  169. TFY (2013) The Fibre Year 2013—World Survey on Textiles & Nonwovens. Issue 14, 2014

    Google Scholar 

  170. Michud A, Tanttu M, Asaadi S, Ma YB, Netti E, Kaariainen P, Persson A, Berntsson A, Hummel M, Sixta H (2016) Ionic liquid-based cellulosic textile fibers as an alternative to viscose and lyocell. Textil Res J 86:543–552

    Article  CAS  Google Scholar 

  171. Hӓmmerle FM (2011) The cellulose gap (the future of cellulose fibres). Lenzinger Ber 89:12–21

    Google Scholar 

  172. Abdel-Mohsen AM, Aly AS, Hrdina R, Montaser AS, Hebeish A (2012) Biomedical textiles through multifunctioalization of cotton fabrics using innovative methoxypolyethylene glycol-N-chitosan graft copolymer. J Polym Environ 20(1):104–116

    Article  CAS  Google Scholar 

  173. Sostar Turk S, Schneider R (2000) Printing properties of a high substituted guar gum and its mixture with alginate. Dyes Pigments 47:269–275

    Article  Google Scholar 

  174. Chen F, Long J-J (2018) Influences of process parameters on the apparent diffusion of an acid dye in sodium alginate paste for textile printing. J Clean Prod 205:1139–1147

    Article  CAS  Google Scholar 

  175. Kobašlija M, McQuade DT (2006) Removable colored coatings based on calcium alginate hydrogels. Biomacromol 7(8):2357–2361

    Article  CAS  Google Scholar 

  176. Neumann MG, Schmitt CC, Iamazaki ET (2003) A fluorescence study of the interactions between sodium alginate and surfactants. Carbohydr Res 338:1109–1113

    Article  CAS  Google Scholar 

  177. Fijan R, Sostar-Turk S, Lapasin R (2007) Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing. Carbohydr Polym 68:708–717

    Article  CAS  Google Scholar 

  178. Bu H, Kjoniksen A-L, Knudsen KD, Nystrom B (2007) Characterization of interactions in aqueous mixtures of hydrophobically modified alginate and different types of surfactant. Colloids Surf A 293:105–113

    Google Scholar 

  179. Lacoste C, Hage RE, Bergeret A, Corn S, Lacroix P (2018) Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohyd Polym 184:1–8

    Article  CAS  Google Scholar 

  180. Bahmani SA, East GC, Holme I (2000) The application of chitosan in pigment printing. Color Technol 116:94–99

    Article  CAS  Google Scholar 

  181. Öktem T (2003) Surface treatment of cotton fabrics with chitosan. Color Technol 119:241–246

    Article  Google Scholar 

  182. Achwal WB (2003) Chitosan and its derivatives for textile finishing. Colourage 50(8):51–76

    CAS  Google Scholar 

  183. Milas M, Rinaudo M (1986) Properties of xanthan gum in aqueous solutions: role of the conformational transition. Carbohydr Res 158:191–204

    Article  CAS  Google Scholar 

  184. Richardson RK, Ross-Murphy SB (1987) Nonlinear viscoelasticity of polysaccharide solutions. 2. Xanthan polysaccharide solutions. Int J Biol Macromol 9:257–264

    Article  CAS  Google Scholar 

  185. Nolte H, John S, Smidsrùd O, Stokke B (1992) Gelation of xanthan with trivalent metal ions. Carbohydr Polym 18:243–251

    Article  CAS  Google Scholar 

  186. Chen CSH, Sheppard EW (1980) Conformation and shear stability of xanthan gum in solution. Polym Eng Sci 20:512–516

    Article  CAS  Google Scholar 

  187. Becker A, Katzen F, Pühler A, lelpie L (1998) Xanthan Gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152

    Google Scholar 

  188. Xue S-J, Jiang H, Chi Z (2019) Over-expression of Vitreoscilla hemoglobin (VHb) and flavohemoglobin (FHb) genes greatly enhances pullulan production. Int J Biol Macromol

    Google Scholar 

  189. Lim S-H, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C Polym Rev J 43(2):223–269

    Article  CAS  Google Scholar 

  190. Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles—a review text. Res J 80:1721–1737

    CAS  Google Scholar 

  191. Younsook S, Il YD, Kyunghye M (1999) Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. J Appl Polym Sci 74(12):2911–2916

    Article  Google Scholar 

  192. Zhang Z, Chen L, Ji J, Huang Y, Chen D (2003) Antibacterial properties of cotton fabrics treated with chitosan. Text Res J 73(12):1103–1106

    Article  CAS  Google Scholar 

  193. Ye W, Leung MF, Xin J, Kwong TL, Lee DKL, Li P (2005) Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46(23):10538–10543

    Article  CAS  Google Scholar 

  194. El-tahlawy KF, El-bendary MA, Elhendawy AG, Hudson SM (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr Polym 60(4):421–430

    Article  CAS  Google Scholar 

  195. Jung KH, Man-Woo H, Wan M, Jiang Y, Hee HS, Jung-Sook B, Hudson SM, Inn-Kyu K (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5):2816–2823

    Google Scholar 

  196. Tseng H-J, Hsu S-H, Wu M-W, Hsueh T-H, Tu P-C (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym. 10(1):53–59

    Article  CAS  Google Scholar 

  197. Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78(2):240–246

    Article  CAS  Google Scholar 

  198. Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77(3):536–543

    Article  CAS  Google Scholar 

  199. Dev VRG, Venugopal J, Sudha S, Deepika G, Ramakrishna S (2009) Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydr Polym 75(4):646–650

    Article  CAS  Google Scholar 

  200. Alonso D, Gimeno M, Sepúlveda-Sánchez JD, Shirai K (2010) Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydr Res 345(6):854–859

    Article  CAS  Google Scholar 

  201. Tayel AA, Moussa SH, El-Tras WF, Elguindy NM, Opwis K (2011) Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. Int J Biol Macromol 49(2):241–245

    Article  CAS  Google Scholar 

  202. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446

    Article  CAS  Google Scholar 

  203. Joshi M, Khanna R, Shekhar R, Jha K (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119(5):2793–2799

    Article  CAS  Google Scholar 

  204. Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787

    Article  CAS  Google Scholar 

  205. Teli MD, Sheikh J (2012) Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int J Biol Macromol 50(5):1195–1200

    Article  CAS  Google Scholar 

  206. Liu J, Liu C, Liu Y, Chen M, Hu Y, Yang Z (2013) Study on the grafting of chitosan–gelatin microcapsules onto cotton fabrics and its antibacterial effect. Colloids Surf B Biointerfaces 109:103–108

    Article  CAS  Google Scholar 

  207. Sheikh J, Bramhecha I (2018) Multifunctional modification of linen fabric using chitosan-based formulations. Int J Biol Macromol 118:896–902

    Article  CAS  Google Scholar 

  208. Huang K, Wu WJ, Chen JB, Lian HS (2008) Application of low-molecular-weight chitosan in durable press finishing. Carbohydr Polym 73:254–260

    Article  CAS  Google Scholar 

  209. Joshi M, Ali SW, Purwar R (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fiber Text. Res 34:295–304

    CAS  Google Scholar 

  210. Chattopadhyay D, Inamdar MS (2014) Improvement in properties of cotton fabric through synthesized nano-chitosan. Indian J Fiber Text Res 38:14–21

    Google Scholar 

  211. Lu Y-H, Chen Y-Y, Lin H, Wang C, Yang Z-D (2010) Preparation of chitosan nanoparticles and their application to Antheraea pernyi silk. J Appl Polym Sci 117(6):3362–3369

    CAS  Google Scholar 

  212. Yang H-C, Wang W-H, Huang K-S, Hon M-H (2010) Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties. Carbohyd Polym 79(1):176–179

    Article  CAS  Google Scholar 

  213. Cheung WH, Szeto YS, McKay G (2009) Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Biores Technol 100(3):1143–1148

    Article  CAS  Google Scholar 

  214. Horrock AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  CAS  Google Scholar 

  215. Innes A, Innes J (2011) Flame retardants. In: Applied plastics engineering handbook

    Google Scholar 

  216. IHS Markit (2017) The flame retardants market, Flameretrdant-online, https://www.flameretardants-online.com/flame-retardants/market

  217. Kim NK, Mao N, Lin R, Bhattacharyya D, van Loosdrecht MCM, Lin Y (2020) Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Res 170:115344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topal, M., Arslan Topal, E.I. (2022). Extracellular Polymeric Substances in Textile Industry. In: Muthu, S.S. (eds) Sustainable Approaches in Textiles and Fashion. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0878-1_2

Download citation

Publish with us

Policies and ethics