Skip to main content

Pyridines, Dihydropyridines and Piperidines: An Outline on Synthesis and Biological Activities

  • Chapter
  • First Online:
N-Heterocycles

Abstract

Since their inception, heterocyclic compounds are the pillar of medicinal chemistry research. Out of all the heterocyclic moiety pyridines, dihydropyridines, and piperidines possess outstanding therapeutic effects and play eminent roles in medicinal, synthetic, and bio-organic chemistry. Derivatives of pyridine, dihydropyridine, and piperidine are reported to have anti-cancer, antihypertensive, antiulcer, antimicrobial, and many other therapeutic applications. In this chapter, various studies related to titled nitrogen-based heterocycles have been encompassed. This chapter will be helpful to researchers working in the field of nitrogen-based heterocyclic compounds. From inferences of studies of various research groups throughout the world, it can be concluded that there are requirements for further research on this medicinally active basic nucleus as they possess multi-functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ande C, Dubbu S, Verma AK et al (2018) Recent developments in the synthesis of prosophylline and its derivatives. Tetrahedron Lett 59:1879–1895

    Article  CAS  Google Scholar 

  • Anderson T (1846) XIV.—On the constitution and properties of picoline, a new organic base from coal-tar. Trans Royal Soc Edinburgh 16:123–136

    Article  Google Scholar 

  • Anderson T (1850) Vorläufiger Bericht über die Wirkung der Salpetersäure auf Organische Alkalien. Justus Liebigs Ann Chem 75:80–83

    Article  Google Scholar 

  • Arredondo VM, Tian S, Mcdonald FE et al (1999) Organolanthanide-catalyzed hydroamination/cyclization. Efficient allene-based transformations for the syntheses of naturally occurring alkaloids. J Am Chem Soc 121:3633–3639

    Article  CAS  Google Scholar 

  • Avendaño C, Menéndez JC (2015) Chapter 10—drugs that inhibit signaling pathways for tumor cell growth and proliferation: kinase inhibitors. In: Avendaño C, Menéndez JC (eds) Medicinal chemistry of anticancer drugs, 2nd edn. Elsevier, Boston, pp 391–491

    Chapter  Google Scholar 

  • Bagley MC, Bashford KE, Hesketh CL et al (2000) Total synthesis of the thiopeptide promothiocin A. J Am Chem Soc 122:3301–3313

    Article  CAS  Google Scholar 

  • Bagley MC, Dale JW, Bower J (2001) A New Modification of the Bohlmann-Rahtz pyridine synthesis. Synlett 2001:1149–1151

    Article  Google Scholar 

  • Bahekar S, Shinde D (2002) Synthesis and anti-inflammatory activity of 1, 4-dihydropyridines. Acta Pharm 52:281–287

    CAS  Google Scholar 

  • Balaev A, Eleev A, Eremin O et al (2010) Search for new drugs. Pharm Chem J 44:56–57

    Article  CAS  Google Scholar 

  • Beaudegnies R, Ghosez L (1994) Asymmetric diels-alder reactions with chiral 1-azadienes. Tetrahedron: Asymmetry 5:557–560

    Google Scholar 

  • Betti M, Castagnoli G, Panico A et al (2012) Development of a scalable route to the SMO receptor antagonist SEN794. Org Process Res Dev 16:1739–1745

    Article  CAS  Google Scholar 

  • Bohlmann F, Rahtz D (1957) Über eine neue pyridinsynthese. Chem Ber 90:2265–2272

    Article  CAS  Google Scholar 

  • Bossert F, Vater W (1989) 1,4-Dihydropyridines—a basis for developing new drugs. Med Res Rev 9:291–324

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Chue P, Guillon Y (2001) Paroxetine: a review. CNS Drug Rev 7:25–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brien DJ, Naiman A, Vollhardt KPC (1982) Catalytic co-cyclisation of α,ω-cyanoalkynes with alkynes: a versatile chemo- and regio-selective synthesis of 2,3-substituted 5,6,7,8-tetrahydroquinolines and other cycloalka[1,2-b]pyridines. J Chem Soc Chem Commun 133–134

    Google Scholar 

  • Brinner KM, Powles MA, Schmatz DM et al (2005) Potent 4-aminopiperidine based antimalarial agents. Bioorg Med Chem Lett 15:345–348

    Article  CAS  PubMed  Google Scholar 

  • Brunner B, Stogaitis N, Lautens M (2006) Synthesis of 1, 2-dihydropyridines using vinyloxiranes as masked dienolates in imino-aldol reactions. Org Lett 8:3473–3476

    Article  CAS  PubMed  Google Scholar 

  • Buonora P, Olsen J-C, Oh T (2001) Recent developments in imino Diels-Alder reactions. Tetrahedron 57:6099–6138

    Article  CAS  Google Scholar 

  • Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  CAS  PubMed  Google Scholar 

  • Cahours A (1852) Recherches sur un nouvelalcalidérivé de la pipérine. C. R. Hebd. Séances Acad. Sci. Ser C 34:481–484

    Google Scholar 

  • Castle RN, Witt NF (1946) The Polymorphism of Sulfapyridine. J Am Chem Soc 68:64–66

    Article  CAS  PubMed  Google Scholar 

  • Chacko S, Ramapanicker R (2015) Proline catalyzed, one-pot three component Mannich reaction and sequential cyclization toward the synthesis of 2-substituted piperidine and pyrrolidine alkaloids. Tetrahedron Lett 56:2023–2026

    Article  CAS  Google Scholar 

  • Chu JCK, Dalton DM, Rovis T (2015) Zn-Catalyzed Enantio- and diastereoselective Formal [4+2] cycloaddition Involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes. J Am Chem Soc 137:4445–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comins DL (1983) α-metalation of 1-(tert-butoxycarbonyl)-1,4-dihydropyridines. Tetrahedron Lett 24:2807–2810

    Article  CAS  Google Scholar 

  • Comins DL, Abdullah AH (1982) Regioselective addition of Grignard reagents to 1-acylpyridinium salts. A convenient method for the synthesis of 4-alkyl (aryl) pyridines. J Org Chem 47:4315–4319

    Article  CAS  Google Scholar 

  • Comins DL, Mantlo NB (1983) Regioselective arylation of 3-bromopyridine. J Heterocycl Chem 20:1239–1243

    Article  CAS  Google Scholar 

  • Comins DL, Abdullah AH, Smith RK (1983) Intramolecular diels-alder reactions of 2-alkenyl-1, 2-dihydropyridines. An approach to the synthesis of the cis-decahydroquinoline ring system. Tetrahedron Lett 24:2711–2714

    Article  CAS  Google Scholar 

  • Comins DL, Hong H, Salvador JM (1991) An efficient asymmetric synthesis of 1-acyl-2-alkyl-1,2-dihydropyridines. J Org Chem 56:7197–7199

    Article  CAS  Google Scholar 

  • Cossy J, Willis C, Bellosta V et al (2002) Enantioselective allyltitanations and metathesis reactions. Application to the synthesis of piperidine alkaloids (+)-sedamine and (−)-prosophylline. J Org Chem 67:1982–1992

    Article  CAS  PubMed  Google Scholar 

  • Dang Z, Yang Y, Ji R et al (2007) Synthesis and antibacterial activity of novel fluoroquinolones containing substituted piperidines. Bioorg Med Chem Lett 17:4523–4526

    Article  CAS  PubMed  Google Scholar 

  • Davis FA, Chao B, Rao A (2001) Intramolecular Mannich reaction in the asymmetric synthesis of polysubstituted piperidines: concise synthesis of the dendrobate alkaloid (+)-241D and Its C-4 Epimer. Org Lett 3:3169–3171

    Article  CAS  PubMed  Google Scholar 

  • De Castro S, Familiar O, Andrei G et al (2011) From β-Amino-γ-sultone to unusual bicyclic pyridine and pyrazine heterocyclic systems: synthesis and cytostatic and antiviral activities. Chem Med Chem 6:686–697

    Article  PubMed  CAS  Google Scholar 

  • De Luca M, Ioele G, Ragno G (2019) 1,4-Dihydropyridine antihypertensive drugs: recent advances in photostabilization strategies. Pharmaceutics 11:85

    Article  PubMed Central  CAS  Google Scholar 

  • De Paolis O, Baffoe J, Landge SM et al (2008) Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10 catalyst: an environmentally benign approach toward the synthesis of pyridines. Synthesis 2008:3423–3428

    Article  CAS  Google Scholar 

  • Debaillie AC, Jones CD, Magnus NA et al (2015) Synthesis of an ORL-1 receptor antagonist via a radical bromination and deoxyfluorination to afford a gem-difluorospirocycle. Org Process Res Dev 19:1568–1575

    Article  CAS  Google Scholar 

  • Deininger MWN, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with Imatinib. Pharmacol Rev 55:401

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo M, Ammazzalorso A, Andreoli F et al (2016) Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors. Bioorg Med Chem Lett 26:3192–3194

    Article  PubMed  CAS  Google Scholar 

  • Dobbin L (1934) The story of the formula for pyridine. J Chem Educ 11:596

    Article  CAS  Google Scholar 

  • Dondoni A, Massi A, Minghini E et al (2003) Model studies toward the synthesis of dihydropyrimidinyl and pyridyl α-amino acids via three-component biginelli and hantzsch cyclocondensations. J Org Chem 68:6172–6183

    Article  CAS  PubMed  Google Scholar 

  • Dong M-X, Lu L, Li H et al (2012) Design, synthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine derivatives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorg Med Chem Lett 22:3284–3286

    Article  CAS  PubMed  Google Scholar 

  • Dooley M, Lamb HM (2000) Donepezil: a review of its use in Alzheimer’s disease. Drugs Aging 16:199–226

    Article  CAS  PubMed  Google Scholar 

  • Dumond YR, Gum AG (2003) Silane reduction of 5-hydroxy-6-methyl-pyridine-3,4-dicarboxylic acid diethyl ester: synthesis of vitamin B6. Molecules 8:873–881

    Article  CAS  PubMed Central  Google Scholar 

  • Engers JL, Rodriguez AL, Konkol LC et al (2015) Discovery of a selective and cns penetrant negative allosteric modulator of metabotropic glutamate receptor subtype 3 with antidepressant and anxiolytic activity in rodents. J Med Chem 58:7485–7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fassihi A, Azadpour Z, Delbari N et al (2009) Synthesis and antitubercular activity of novel 4-substituted imidazolyl-2,6-dimethyl-N3, N5-bisaryl-1,4-dihydropyridine-3,5-dicarboxamides. Eur J Med Chem 44:3253–3258

    Article  CAS  PubMed  Google Scholar 

  • Fowler FW (1972) Synthesis of 1, 2-and 1, 4-dihydropyridines. J Org Chem 37:1321–1323

    Article  Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Google Scholar 

  • Golubev AS, Sewald N, Burger K (1996) Synthesis of γ-oxo α-amino acids from L-aspartic acid. Tetrahedron 52:14757–14776

    Article  CAS  Google Scholar 

  • Hantzsch A (1882) Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann Chem 215:1–82

    Article  Google Scholar 

  • Harrison TS, Scott LJ (2005) Atazanavir. Drugs 65:2309–2336

    Article  CAS  Google Scholar 

  • Harrity JPA, Provoost O (2005) [3 + 3] Cycloadditions and related strategies in alkaloid natural product synthesis. Org Biomol Chem 3:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Hedley SJ, Moran WJ, Prenzel AHGP et al (2001) Synthesis of functionalised piperidines through a [3+3] cycloaddition strategy. Synlett 2001:1596–1598

    Article  Google Scholar 

  • Heintzelman GR, Weinreb SM, Parvez M (1996) Imino Diels−Alder-based construction of a piperidine A-ring unit for total synthesis of the marine hepatotoxin cylindrospermopsin. J Org Chem 61:4594–4599

    Article  CAS  PubMed  Google Scholar 

  • Henry GD (2004) De novo synthesis of substituted pyridines. Tetrahedron 60:6043–6061

    Article  CAS  Google Scholar 

  • Hill MD (2010) Recent strategies for the synthesis of pyridine derivatives. Chem Eur J 16:12052–12062

    Google Scholar 

  • Hilliquin P, Munoz A, Menkes CJ (1992) Salazosulfapyridine in rheumatoid arthritis. A study of 49 patients. Ann Med Interne (paris) 143:149–154

    CAS  Google Scholar 

  • Hosono T, Yokomizo K, Hamasaki A et al (2008) Antiviral activities against herpes simplex virus type 1 by HPH derivatives and their structure–activity relationships. Bioorg Med Chem Lett 18:371–374

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Li Y, Sheng C et al (2015) 7B.09: blood pressure lowering efficacy of amlodipine and nifedipine-gits in ambulatory hypertension. J Hypertens 33:e94

    Google Scholar 

  • Jiang J-L, Li A-H, Jang S-Y et al (1999) Chiral resolution and stereospecificity of 6-phenyl-4-phenylethynyl- 1,4-dihydropyridines as selective A3 adenosine receptor antagonists. J Med Chem 42:3055–3065

    Article  CAS  PubMed  Google Scholar 

  • Keenan TP, Yaeger D, Holt DA (1999) Synthesis of chiral nonracemic 4-trans-substituted pipecolic acid derivatives. Tetrahedron: Asymmetry 10:4331–4341

    Google Scholar 

  • Khan E (2021) Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. Chem Select 6:3041–3064

    CAS  Google Scholar 

  • Kidwai M, Sapra P, Bhushan KR et al (2001) Microwave induced synthesis and antibacterial activity of cephalosporin derivatives using solid support. Bioorg Chem 29:380–386

    Article  CAS  PubMed  Google Scholar 

  • Kiue A, Sano T, Suzuki K-I et al (1990) Activities of newly synthesized dihydropyridines in overcoming of vincristine resistance, calcium antagonism, and inhibition of photoaffinity labeling of P-glycoprotein in rodents. Cancer Res 50:310

    CAS  PubMed  Google Scholar 

  • Knaus EE, Redda K (1977) The sodium borohydride reduction of N-sulfonylpyridinium salts. Synthesis of N-sulfonyl-1,4-(1,2-) dihydropyridines. Can J Chem 55:1788–1791

    Article  CAS  Google Scholar 

  • Ko S, Sastry M, Lin C et al (2005) Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1, 4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett 46:5771–5774

    Article  CAS  Google Scholar 

  • Krasavin M, Sosnov AV, Karapetian R et al (2014) Antiproliferative 4-(1,2,4-oxadiazol-5-yl)piperidine-1-carboxamides, a new tubulin inhibitor chemotype. Bioorg Med Chem Lett 24:4477–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kröhnke F, Zecher W, Curtze J et al (1962) Syntheses using the michael adddition of phridinium salts. Angew Chem Int Ed Engl 1:626–632

    Google Scholar 

  • Kuehl FA, Spencer CF, Folkers K (1948) Alkaloids of Dichroa Febrifuga Lour. J Am Chem Soc 70:2091–2093

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Idhayadhulla A, Nasser A et al (2011) Synthesis and anticancer activity of some new series of 1, 4-dihydropyridine derivatives

    Google Scholar 

  • Lee JH (2005) Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett 46:7329–7330

    Article  CAS  Google Scholar 

  • León R, De Los RC, Marco-Contelles J et al (2008) New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg Med Chem 16:7759–7769

    Article  PubMed  CAS  Google Scholar 

  • Li T, Zhang J, Pan J et al (2017) Design, synthesis, and antiviral activities of 1,5-benzothiazepine derivatives containing pyridine moiety. Eur J Med Chem 125:657–662

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang Q, Wang L et al (2010) PPh3-catalyzed [2+2+2] and [4+2] annulations: synthesis of highly substituted 1,2-dihydropyridines (DHPs). Chem Commun 46:312–314

    Article  CAS  Google Scholar 

  • Maison W, Adiwidjaja G (2002) A short stereoselective synthesis of disubstituted cyclic amino acids. Tetrahedron Lett 43:5957–5960

    Article  CAS  Google Scholar 

  • Manna D, Bhuyan R, Saikh F et al (2018) Novel 1,4-dihydropyridine induces apoptosis in human cancer cells through overexpression of Sirtuin1. Apoptosis 23:532–553

    Article  CAS  PubMed  Google Scholar 

  • Marcinkowska M, Kołaczkowski M, Kamiński K et al (2016) Design, synthesis, and biological evaluation of fluorinated imidazo[1,2-a]pyridine derivatives with potential antipsychotic activity. Eur J Med Chem 124:456–467

    Article  CAS  PubMed  Google Scholar 

  • Marco-Contelles J, León R, De Los RC et al (2009) Tacripyrines, the first tacrine− dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer’s disease. J Med Chem 52:2724–2732

    Article  CAS  PubMed  Google Scholar 

  • Mckeage K (2015) Alectinib: a review of its use in advanced ALK-s. Drugs 75:75–82

    Article  CAS  PubMed  Google Scholar 

  • Milošević MD, Marinković AD, Petrović P et al (2020) Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents. Bioorg Chem 102:104073

    Google Scholar 

  • Mohajeri SA, Hosseinzadeh H, Salami S et al (2011) Synthesis of novel 4-[1-(4-fluorobenzyl)-5-imidazolyl] dihydropyridines and studying their effects on rat blood pressure. Iran J Basic Med Sci 14:451–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molander GA, Dowdy ED, Pack SK (2001) A Diastereoselective intramolecular hydroamination approach to the syntheses of (+)-, (±)-, and (−)-Pinidinol. J Org Chem 66:4344–4347

    Article  CAS  PubMed  Google Scholar 

  • Motamed M, Bunnelle EM, Singaram SW et al (2007) Pt (II)-catalyzed synthesis of 1, 2-dihydropyridines from aziridinyl propargylic esters. Org Lett 9:2167–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muluk MB, Dhumal ST, Rehman NNMA et al (2019) Synthesis, anticancer and antimicrobial evaluation of new (E)-N′-benzylidene-2-(2-ethylpyridin-4-yl)-4-methylthiazole-5-carbohydrazides. Chem Select 4:8993–8997

    CAS  Google Scholar 

  • Murata T, Shimada M, Sakakibara S et al (2004) Synthesis and structure–activity relationships of novel IKK-β inhibitors. Part 3: orally active anti-inflammatory agents. Bioorg Med Chem Lett 14:4019–4022

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Shimada M, Kadono H et al (2004) Synthesis and structure–activity relationships of novel IKK-β inhibitors. Part 2: improvement of in vitro activity. Bioorg Med Chem Lett 14:4013–4017

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Osone K, Takeshita M et al (2010) A novel chiral oxazolidine organocatalyst for the synthesis of an oseltamivir intermediate using a highly enantioselective Diels-Alder reaction of 1,2-dihydropyridine. Chem Commun 46:4827–4829

    Article  CAS  Google Scholar 

  • Nicolaou KC, Scarpelli R, Bollbuck B et al (2000) Chemical synthesis and biological properties of pyridine epothilones. Chem Biol 7:593–599

    Article  CAS  PubMed  Google Scholar 

  • Nogae I, Kohno K, Kikuchi J et al (1989) Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photoaffinity labeling of P-glycoprotein. Biochem Pharmacol 38:519–527

    Article  CAS  PubMed  Google Scholar 

  • Ohashi M, Takeda I, Ikawa M et al (2011) Nickel-catalyzed dehydrogenative [4+2] cycloaddition of 1,3-Dienes with Nitriles. J Am Chem Soc 133:18018–18021

    Article  CAS  PubMed  Google Scholar 

  • Ojima I, Iula DM (1999) Chapter Five - New Approaches to the syntheses of piperidine, izidine, and quinazoline alkaloids by means of transition metal catalyzed carbonylations. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon, pp 371–412

    Google Scholar 

  • Othman IMM, Gad-Elkareem MaM, Anouar EH et al (2020) Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: design, synthesis, pharmacokinetics and molecular docking studies. J Mol Struct 1219:128651

    Google Scholar 

  • Pachamuthu K, Vankar YD (2001) Synthesis of (−)-coniine and (−)-pipecoline using ruthenium catalyzed ring closing metathesis. J Organomet Chem 624:359–363

    Article  CAS  Google Scholar 

  • Palacios F, Herrán E, Rubiales G (1999) Reaction of N-vinylic phosphazenes derived from β-amino acids with aldehydes. Azadiene-mediated synthesis of dihydropyridines, pyridines, and polycyclic nitrogen derivatives. J Org Chem 64:6239–6246

    Article  CAS  Google Scholar 

  • Palacios F, Alonso C, Rubiales G et al (2001) Cycloaddition reactions of neutral 2-azadienes with enamines− regiospecific synthesis of highly substituted dihydropyridines and pyridines. Eur J Org Chem 2001:2115–2122

    Article  Google Scholar 

  • Palani A, Shapiro S, Clader JW et al (2001) Discovery of 4-[(Z)-(4-bromophenyl)- (ethoxyimino)methyl]-1‘-[(2,4-dimethyl-3- pyridinyl)carbonyl]-4‘-methyl-1,4‘- bipiperidine N-Oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem 44:3339–3342

    Article  CAS  PubMed  Google Scholar 

  • Platel K, Srinivasan K (2000) Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung 44:42–46

    Article  CAS  PubMed  Google Scholar 

  • Radha Krishna P, Reddy BK (2013) Total synthesis of the 2,6-disubstituted piperidine alkaloid (−)-andrachcinidine. Tetrahedron: Asymmetry 24:758–763

    Google Scholar 

  • Ramsay W (1876) XXXIV. On picoline and its derivatives. London. Edinburgh Dublin Philos. Mag. J. Sci. 2:269–281

    Article  Google Scholar 

  • Robinson JM, Ahmed M, Alaniz NJ et al (1998) Pyridine syntheses. II. Condensation routes toward streptonigrin ring C. J Heterocycl Chem 35:65–69

    Article  CAS  Google Scholar 

  • Sagitullin RS, Shkil GP, Nosonova II et al (1996) Synthesis of pyridine bases by the chichibabin method (review). Chem Heterocycl Compd 32:127–140

    Article  Google Scholar 

  • Sajadikhah SS, Maghsoodlou MT, Hazeri N et al (2012) One-pot five-component synthesis of highly functionalized piperidines using oxalic acid dihydrate as a homogenous catalyst. Chin Chem Lett 23:569–572

    Article  CAS  Google Scholar 

  • Shi F, Li C, Xia M et al (2009) Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg Med Chem Lett 19:5565–5568

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y (1984) Alkaloids, volume 1: chemical and biological perspectives. In William Pelletier S (ed) Wiley-Interscience, p 398

    Google Scholar 

  • Shin H-N, Seo SH, Choo H et al (2013) Synthesis and antibacterial activities of new piperidine substituted (5R)-[1,2,3]triazolylmethyl and (5R)-[(4-F-[1,2,3]triazolyl)methyl] oxazolidinones. Bioorg Med Chem Lett 23:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Sirisha K, Achaiah G, Reddy VM (2010) Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1, 4-dihydropyridines. Arch Pharm 343:342–352

    Article  CAS  Google Scholar 

  • Snider BB, Harvey TC (1995) Synthesis of a bicyclic model for the marine hepatotoxin cylindrospermopsin. Tetrahedron Lett 36:4587–4590

    Article  CAS  Google Scholar 

  • Sowmya PV, Poojary B, Revanasiddappa BC et al (2017) Novel 2-methyl-6-arylpyridines carrying active pharmacophore 4,5-dihydro 2-pyrazolines: synthesis, antidepressant, and anti-tuberculosis evaluation. Res Chem Intermed 43:7399–7422

    Article  CAS  Google Scholar 

  • Sperger CA, Wanner KT (2009) Regioselective addition of organomagnesium reagents to N-silyl activated nicotinic acid esters—a convenient method for the synthesis of 4, 4-disubstituted 1, 4-dihydronicotinates. Tetrahedron 65:5824–5833

    Article  CAS  Google Scholar 

  • Stamler J, Stamler R, Neaton JD (1993) Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 153:598–615

    Article  CAS  PubMed  Google Scholar 

  • Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihydropyridines. Chem Rev 82:223–243

    Article  CAS  Google Scholar 

  • Subudhi BB, Bhatta P (2009) B B Subudhi, P K Panda and D Bhatta Synthesis and antiulcer activity study of 1,4-dihydropyridines and their mannich bases with sulfanilamide. Ind J Chem (Sec B). NISCAIR 2009; 48(B):725–728). Indian J Chem Sect B 48(B):725–728

    Google Scholar 

  • Sweeney TR (1981) The present status of malaria chemotherapy: mefloquine, a novel antimalarial. Med Res Rev 1:281–301

    Article  CAS  PubMed  Google Scholar 

  • Takemiya A, Hartwig JF (2006) Rhodium-catalyzed Intramolecular, anti-markovnikov hydroamination. Synthesis of 3-arylpiperidines. J Am Chem Soc 128:6042–6043

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Kertesz DJ, Yang M et al (2010) Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Phenyl derivatives with broad potency against resistant mutant viruses. Bioorg Med Chem Lett 20:6020–6023

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Hirano K, Kubota T et al (1999) Pyrinodemin A, a cytotoxic pyridine alkaloid with an isoxazolidine moiety from sponge Amphimedon sp. Tetrahedron Lett 40:4819–4820

    Article  CAS  Google Scholar 

  • Tu S, Jia R, Jiang B et al (2007) Kröhnke reaction in aqueous media: one-pot clean synthesis of 4′-aryl-2,2′:6′,2″-terpyridines. Tetrahedron 63:381–388

    Article  CAS  Google Scholar 

  • Vannelli TA, Dykman A, Ortiz De Montellano PR (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277:12824–12829

    Article  CAS  PubMed  Google Scholar 

  • Varela JA, Saá C (2003) Construction of pyridine rings by metal-mediated [2+2+2] cycloaddition. Chem Rev 103:3787–3802

    Article  CAS  PubMed  Google Scholar 

  • Vijesh A, Isloor AM, Peethambar S et al (2011) Hantzsch reaction: synthesis and characterization of some new 1, 4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur J Med Chem 46:5591–5597

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov MG, Turova OV, Zlotin SG (2019) Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org Biomol Chem 17:3670–3708

    Article  CAS  PubMed  Google Scholar 

  • Van De Walle T, Boone M, Van Puyvelde J et al. (2020) Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur J Med Chem 198:112330

    Google Scholar 

  • Wallmark B (1986) Mechanism of action of omeprazole. Scand J Gastroenterol 21:11–16

    Article  Google Scholar 

  • Wang C, Li X, Wu F et al (2011) A simple and highly efficient iron catalyst for a [2+2+2] cycloaddition to form pyridines. Angew Chem Int Ed 50:7162–7166

    Article  CAS  Google Scholar 

  • Wang Z (2010) Kondrat’eva pyridine synthesis. In: Wang Z (ed) comprehensive organic name reactions and reagents, pp 1668–1671

    Google Scholar 

  • Wenkert E, Angell EC, Drexler J et al (1986) Carbon-carbon bond-forming additions to 1-alkyl-3-acylpyridinium salts. J Org Chem 51:2995–3000

    Article  CAS  Google Scholar 

  • Wong WC, Chiu G, Wetzel JM et al (1998) Identification of a dihydropyridine as a potent α1a adrenoceptor-selective antagonist that inhibits phenylephrine-induced contraction of the human prostate. J Med Chem 41:2643–2650

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi R, Nakazono Y, Kawanisi M (1983) On the regioselectivity of the reaction of N-methoxycarbonylpyridinium chloride with Grignard reagents: highly regioselective synthesis of 2-substituted N-methoxycarbonyl-1, 2-dihydropyridines. Tetrahedron Lett 24:1801–1804

    Article  CAS  Google Scholar 

  • Younis Y, Douelle F, Feng T-S et al (2012) 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem 55:3479–3487

    Article  CAS  PubMed  Google Scholar 

  • Yu YN, Han Y, Zhang F et al (2020) Design, synthesis, and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3K/mTOR dual inhibitors. J Med Chem 63:3028–3046

    Article  CAS  PubMed  Google Scholar 

  • Zhmurenko LA, Molodavkin GM, Voronina TA et al (2012) Synthesis and antidepressant and anxiolytic activity of derivatives of pyrazolo[4,3-c]pyridine and 4-phenylhydrazinonicotinic acids. Pharm Chem J 46:15–19

    Article  CAS  Google Scholar 

  • Zhou K, Wang X-M, Zhao Y-Z et al (2011) Synthesis and antihypertensive activity evaluation in spontaneously hypertensive rats of nitrendipine analogues. Med Chem Res 20:1325–1330

    Article  CAS  Google Scholar 

  • Zhuravel’ IO, Kovalenko SM, Ivachtchenko AV et al (2005) Synthesis and antimicrobial activity of 5-hydroxymethyl- 8-methyl-2-(N-arylimino)-pyrano[2,3-c]pyridine-3-(N-aryl)-carboxamides. Bioorg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhisma Kumar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajbongshi, K.K., Dam, B., Patel, B.K. (2022). Pyridines, Dihydropyridines and Piperidines: An Outline on Synthesis and Biological Activities. In: Ameta, K.L., Kant, R., Penoni, A., Maspero, A., Scapinello, L. (eds) N-Heterocycles. Springer, Singapore. https://doi.org/10.1007/978-981-19-0832-3_1

Download citation

Publish with us

Policies and ethics