Skip to main content

Ecological Interplays in Microbial Enzymology: An Introduction

  • Chapter
  • First Online:
Ecological Interplays in Microbial Enzymology

Abstract

Microorganisms are ubiquitous and produce certain products, which could be beneficial or detrimental to either their survival or the survival of surrounding lives. Among these products are enzymes. These are specialized proteins that are responsible for respiration, digestion, and other metabolic activities in living bodies. Enzymes, especially microbial enzymes, have several uses in industries, such as the agricultural sector, in environmental fields, and many more. They have the capacity to degrade toxic chemical substances found in domestic and industrial wastes. The process of detoxifying toxic substances is either via conversion or via degradation. This chapter, however, deals with the editorial overview and the purpose of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh, E., Gizaw, Z. T., & Wassie, M. (2017). Microorganisms in bioremediation—A review. Open Journal of Environmental Biology, 2, 38–46. https://doi.org/10.17352/ojeb.000007

    Article  Google Scholar 

  • Achuba, F. I., & Okoh, P. N. (2014). Effect of petroleum products on soil catalase and dehydrogenase activities. Open Journal of Soil Science, 4(12), 399.

    Article  Google Scholar 

  • Alrumman, S. A., Standing, D. B., & Paton, G. I. (2015). Effects of hydrocarbon contamination on soil microbial community and enzyme activity. Journal of King Saud University-Science, 27(1), 31–41.

    Article  Google Scholar 

  • Alsaud, N., Shahbaz, K., & Farid, M. (2021). Antioxidant and antibacterial evaluation of Manuka leaves (Leptospermum scoparium) extracted by hydrophobic deep eutectic solvent. Chemical Engineering Research and Design, 174, 96–106.

    Article  CAS  Google Scholar 

  • Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Kuzyakov, Y., et al. (2020). Meta-analysis of heavy metal effects on soil enzyme activities. Science of the Total Environment, 737, 139744.

    Article  CAS  PubMed  Google Scholar 

  • Banks, M. K., Mallede, H., & Rathbone, K. (2003). Rhizosphere microbial characterization in petroleum-contaminated soil. Soil and Sediment Contamination, 12, 371–385.

    Article  Google Scholar 

  • Baran, S., Bielińska, J. E., & Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118(3–4), 221–232.

    Article  CAS  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63–67.

    Article  CAS  Google Scholar 

  • Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipele, S. J., Thorp, J. H., & Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystem?. 62(5), 833–853.

    Google Scholar 

  • Chandrakant, S. K., & Shwetha, S. R. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 805187.

    Google Scholar 

  • Gao, Y., Zhou, P., Mao, L., Zhi, Y. E., & Shi, W. J. (2010). Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: Modified ecological dose–response model and PCR-RAPD. Environmental Earth Sciences, 60(3), 603–612.

    Article  CAS  Google Scholar 

  • Hayyan, M., Hashim, M. A., Al-Saadi, M. A., Hayyan, A., AlNashef, I. M., & Mirghani, M. E. (2013). Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 93(2), 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Humberto, G. A., Miguel, A., & Antonio, B. (2004). Use and improvement of microbial redox enzymes for environmental purposes. Microbial Cell Factories, 3, 10.

    Article  Google Scholar 

  • Indu, S. (2019). Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. IntechOpen Book Series.

    Google Scholar 

  • Juneidi, I., Hayyan, M., & Hashim, M. A. (2018). Intensification of biotransformations using deep eutectic solvents: Overview and outlook. Process Biochemistry, 66, 33–60.

    Article  CAS  Google Scholar 

  • Karaca, A., Cetin, S. C., Turgay, O. C., & Kizilkaya, R. (2010). Effects of heavy metals on soil enzyme activities. In Soil heavy metals (pp. 237–262). Springer.

    Chapter  Google Scholar 

  • Karthikeyan, R., & Bhandari, A. (2001). Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: A review. Journal of Hazardous Substance Research, 3(1), 3.

    Article  Google Scholar 

  • Klimkowicz-Pawlas, A., & Maliszewska-Kordybach, B. (2008). Effect of the selected organic solvents on the activity of soil microorganisms. Roczniki Panstwowego Zakladu Higieny, 59(1), 83–96.

    CAS  PubMed  Google Scholar 

  • Kritika, P., Brajesh, S., Ashutosh, K. P., & Ishrat, J. B. (2017). Application of microbial enzymes in industrial waste water treatment. International Journal of Current Microbiology and Applied Sciences, 6(8), 1243–1254.

    Article  Google Scholar 

  • Liang, Y., Pan, Z., Chen, Z., Fei, Y., Zhang, J., Yuan, J., Zhang, J., et al. (2020). Ultrasound-assisted natural deep eutectic solvents as separation-free extraction media for hydroxytyrosol from olives. ChemistrySelect, 5(35), 10939–10944.

    Article  CAS  Google Scholar 

  • Lipińska, A., Kucharski, J., & Wyszkowska, J. (2014). The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil. Polycyclic Aromatic Compounds, 34(1), 35–53.

    Article  Google Scholar 

  • Loehr, R. C., McMillen, S. J., & Webster, M. T. (2001). Predictions of biotreatability and actual results: Soils with petroleum hydrocarbons. Practice Periodical of Hazardous, Toxic, Waste Management, 5(2), 78–87.

    Article  CAS  Google Scholar 

  • Luepromchai, E., Lertthamrongsak, W., Pinphanichakarn, P., Thaniyavarn, S., Pattaragulwanit, K., & Juntongjin, K. (2007). Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums. Biodegradation, 29(2), 516.

    Google Scholar 

  • Maddela, N. R., & García, L. C. (2021). Innovations in biotechnology for a sustainable future (p. VIII, 502). Springer Nature. ISBN: 978–3–030-80107-6. Retrieved from https://www.springer.com/gp/book/9783030801076

    Book  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018a). Impact of Acephate and Buprofezin on soil cellulases. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_4

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018b). Impact of Acephate and Buprofezin on soil amylases. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_5

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018c). Impact of Acephate and Buprofezin on soil invertase. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_6

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018d). Impact of Acephate and Buprofezin on soil proteases. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_7

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018e). Impact of Acephate and Buprofezin on soil urease. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_8

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkateswarlu, K. (2018f). Impact of Acephate and Buprofezin on soil phosphatases. In Insecticides−soil microbiota interactions. Springer. https://doi.org/10.1007/978-3-319-66589-4_9

    Chapter  Google Scholar 

  • Maddela, N. R., & Venkatewarlu, K. (2013). Impact of pesticides combination on soil microorganisms. Research and Reviews: Journal of Microbiology and Biotechnology, 2(4), 29–36.

    Google Scholar 

  • Maddela, N. R., Garcia, L. C., & Chakraborty, S. (2021). Advances in the domain of environmental biotechnology (p. XVIII, 717). Springer Nature Singapore. ISBN: 978-981-15-8999-7. Retrieved from https://www.springer.com/gp/book/9789811589980. https://doi.org/10.1007/978-981-15-8999-7

    Book  Google Scholar 

  • Mao, S., Yu, L., Ji, S., Liu, X., & Lu, F. (2016). Evaluation of deep eutectic solvents as co-solvent for steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex. Journal of Chemical Technology & Biotechnology, 91(4), 1099–1104.

    Article  CAS  Google Scholar 

  • Margesin, R., Walder, G., & Schinner, F. (2000). The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 20(3–4), 313–333.

    Article  CAS  Google Scholar 

  • Mariana, F., Mirela, N. D., Georgiana, M., Bianca, S. Z., & Gigel, P. (2020). Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review. Sustainability, 12(7012), 7205.

    Google Scholar 

  • Mateusz, M., Hubert, C., & Grzegorz, B. (2021). Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. Journal of Hazardous Materials, 425, 127963. https://doi.org/10.1016/j.jhazmat.2021.127963

    Article  CAS  Google Scholar 

  • Mohiddin, G. J., Srinivasulu, M., Maddela, N. R., Manjunatha, B., Rangaswamy, V., Rosel, A., Rueda, O. D., et al. (2015). Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils. Environmental Monitoring and Assessment, 187(6), 1.

    Google Scholar 

  • Moreno, J. L., Hernández, T., & Garcia, C. (1999). Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biology and Fertility of Soils, 28(3), 230–237.

    Article  CAS  Google Scholar 

  • Nedaa, A., Narjes, D., Majida, K., Husain, A., & Samir, R. (2020). Bioremediation of soils saturated with spilled crude oil. Scientific Reports, 10, 1116.

    Article  Google Scholar 

  • Omar, S. A., & Abdel-Sater, M. A. (2001). Microbial populations and enzyme activities in soil treated with pesticides. Water, Air, and Soil Pollution, 127(1), 49–63.

    Article  CAS  Google Scholar 

  • Pan, J., & Yu, L. (2011). Effects of cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37(11), 1889–1894.

    Article  Google Scholar 

  • Radošević, K., Čanak, I., Panić, M., Markov, K., Bubalo, M. C., Frece, J., Redovniković, I. R., et al. (2018). Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environmental Science and Pollution Research, 25(14), 14188–14196.

    Article  PubMed  Google Scholar 

  • Rajendra, S., Manoj, K., Anshumali, M., & Praveen, K. (2016). Microbial enzymes: Industrial progress in 21st century. US National Library of Medicine., 6(2), 174.

    Google Scholar 

  • Raju, M. N., & Venkateswarlu, K. (2013). Adverse effect of buprofezin and acephate on enzymatic activities in NPK amended and unamended cotton soils. University Journal of Microbiological Research, 1(3), 36–42.

    Article  Google Scholar 

  • Raju, M. N., & Venkateswarlu, K. (2014). Effect of repeated applications of buprofezin and acephate on soil cellulases, amylase, and invertase. Environmental Monitoring and Assessment, 186(10), 6319–6325.

    Article  CAS  PubMed  Google Scholar 

  • Riah, W., Laval, K., Laroche-Ajzenberg, E., Mougin, C., Latour, X., & Trinsoutrot-Gattin, I. (2014). Effects of pesticides on soil enzymes: A review. Environmental Chemistry Letters, 12(2), 257–273.

    Article  CAS  Google Scholar 

  • Ricardo, C., William, J. R., & Nicole, S. W. (2019). Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17, 569–586.

    Article  Google Scholar 

  • Sardar, K. H. A. N., Qing, C. A. O., Hesham, A. E. L., Yue, X. I. A., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19(7), 834–840.

    Article  Google Scholar 

  • Sindhu, R., Binod, P., Sabeela, B. U., Amith, A., Anil, K. M., Aravind, M., Sharrel, R., & Ashok, P. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30.

    Google Scholar 

  • Wang, J., Xue, J., Dong, X., Yu, Q., Baker, S. N., Wang, M., & Huang, H. (2020). Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent. International Journal of Pharmaceutics, 575, 119005.

    Article  CAS  PubMed  Google Scholar 

  • Wojeicchowski, J. P., Marques, C., Igarashi-Mafra, L., Coutinho, J. A., & Mafra, M. R. (2021). Extraction of phenolic compounds from rosemary using choline chloride–based deep eutectic solvents. Separation and Purification Technology, 258, 117975.

    Article  CAS  Google Scholar 

  • Wu, B., Lan, T., Lu, D., & Liu, Z. (2014). Ecological and enzymatic responses to petroleum contamination. Environmental Science: Processes & Impacts, 16(6), 1501–1509.

    CAS  Google Scholar 

  • Wyszkowska, J., & Kucharski, J. (2000). Biochemical properties of soil contaminated by petrol. Polish Journal of Environmental Studies, 9(6), 479–486.

    CAS  Google Scholar 

  • Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naga Raju Maddela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aransiola, S.A., Joseph, F., Oyedele, O.J., Maddela, N.R. (2022). Ecological Interplays in Microbial Enzymology: An Introduction. In: Maddela, N.R., Abiodun, A.S., Prasad, R. (eds) Ecological Interplays in Microbial Enzymology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0155-3_1

Download citation

Publish with us

Policies and ethics