Skip to main content

Improved Sterilization Techniques for Successful In Vitro Micropropagation

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops

Abstract

Biotechnological solutions based on in vitro plant tissue culture paved the way for assessing desirable features by increasing the efficiency of in vitro regeneration methods, such as the production of a large number of high-quality plants in a short period of time. Contamination during in vitro regeneration operations, on the other hand, is one of the most serious issues that could stymie progress in this approach. Due to their rapid growth features in the media, numerous bacteria have posed a significant risk to in vitro cultures. The efficiency of the in vitro sterilization procedure has a direct impact on the establishment and maintenance of plants in in vitro cultures. The effective sterilization of biological material (e.g., initial explant) is required for successful in vitro culture initiation. A simple and effective approach to sterilizing explants employing different sterilants such as Nistatin, Flugal, Bavistin, Ridomil gold, and Mercuric chloride has been discussed in this chapter. Standardization of these methods can improve the survival and regeneration ability of large numbers of candidate explants, which is critical for enhancing the efficiency of plant tissue culture transformation systems. This chapter outlines enhanced sterilization procedures, including adequate sterilant concentrations, duration of explant exposure to various sterilants, and sequences of applying these sterilants, for effective in vitro tissue culture programs that could facilitate the large-scale micropropagation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abass, M.H. 2013. Microbial contaminants of date palm (Phoenix dactylifera L.) in Iraqi tissue culture laboratories. Emirates Journal of Food and Agriculture 25: 875–882.

    Article  Google Scholar 

  • Abbasi, Z., R.P. Singh, and D.N.S. Gautam. 2016. A novel aseptic technique for micropropagation of Aloe vera mill. Advanced Herbal Medicine 2: 47–60.

    CAS  Google Scholar 

  • Abdulrahman A., Alatar Mohammad, Faisal Eslam M., Abdel-Salam Tomas, Canto Quaiser, Saquib Saad B., Javed Mohamed A., El-Sheikh Abdulaziz A., Al-Khedhairy (2017) Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi Journal of Biological Sciences 24(6) 1430–1436 https://doi.org/10.1016/j.sjbs.2017.03.008.

  • Akin-Idowu, P.E., D.O. Ibitoye, and O.T. Ademoyegun. 2009. Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology 8: 3782–3788.

    Google Scholar 

  • Altan, F., B. Bürün, and N. Sahin. 2010. Fungal contaminants observed during micropropagation of Lilium candidum L. and the effect of chemotherapeutic substances applied after sterilization. African Journal of Biotechnology 9: 991–995.

    Article  CAS  Google Scholar 

  • Allan, A. 1991. Plant cell culture. In Plant cell and tissue culture, ed. A. Stafford and G. Warren. MiltonKeynes: Open University Press.

    Google Scholar 

  • Antony, Toji, Anees PVM, Vikas Kumar, Devika Sangamithra, T. Philip, and A.V. Santhoshkumar. 2015. Application of mercuric chloride and charcoal in micro-propagation of teak (Tectona grandis). Indian Journal of Tropical Biodiversity 23 (2): 157–166.

    Google Scholar 

  • Assareh, M.H., and H. Sardabi. 2005. Macropropagation and micropropagation of Ziziphus spinachristi. Pesquisa Agropecuária Brasileira 40: 459–465.

    Article  Google Scholar 

  • Atul Babu, G., and R. Ravindhran. 2019. Influence of organic derivatives on direct regeneration of finger millet genotype CO9. International Journal of Scientific Research in Biological Sciences 6: 33–42.

    Article  Google Scholar 

  • Atul Babu, G., A. Vinoth, and R. Ravindhran. 2017. Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers. Plant Cell Tissue and Organ Culture 132: 157–164.

    Article  CAS  Google Scholar 

  • Badoni, A., and J.S. Chauhan. 2009. In vitro sterilization protocol for micropropagation of Solanum tuberosum cv. ‘Kufri Himalini’. AcadArena 1: 5–8.

    Google Scholar 

  • Barrett, C., and A.C. Casselles. 1994. An evaluation of antibiotics for the elimination of Xanthomonas campestris cv. pelargonii (Brown) from Pelargonium x domesticum cv. ‘Grand Slam’ explants in vitro. Plant Cell Tissue and Organ Culture 36: 169–175.

    Article  CAS  Google Scholar 

  • Bhawana, J.M. Stubblefield, A.L. Newsome, and A.B. Cahoon. 2015. Surface decontamination of plant tissue explants with chlorine dioxide gas. In Vitro Cellular & Developmental Biology 51: 214–219.

    Article  CAS  Google Scholar 

  • Bhoite, H.A., and G.S. Palshikar. 2014. Plant tissue culture: A review. World Journal of Pharmaceutical Sciences 2: 565–572.

    Google Scholar 

  • Bloomfield, S.F., M. Arthur, E. Looney, K. Begun, and H. Patel. 1991. Comparative testing of disinfectant and antiseptic products using proposed European suspension testing methods. Letters in Applied Microbiology 13 (5): 233–237. https://doi.org/10.1111/j.1472-765X.1991.tb00617.x.

    Article  CAS  Google Scholar 

  • Brondani, G.E., L.S. de Oliveira, T. Bergonci, A.E. Brondani, F.A.M. França, A.L.L. da Silva, and A.N. Goncalves. 2013. Chemical sterilization of culture medium: A low cost alternative to in vitro establishment of plants. Scientia Forestalis 41: 257–264.

    Google Scholar 

  • Buckley, P.M., and B.M. Reed. 1994. Antibiotic susceptibility of plant associated bacteria. Horticultural Science 29: 434.

    Google Scholar 

  • Cardoso, J.C. 2009. Chemical sterilization of culture medium for anthurium in vitro culture. Pesquisa Agropecuária Brasileira 44: 785–788.

    Article  Google Scholar 

  • Cassells, A.C. 1991. Problems in tissue culture: Culture contamination. In Micropropagation technology tind application, ed. P.C. Debergh and R.H. Zimmerm, 31–44. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Constantine, D.R. 1986. Micropropagation in the commercial environment. In Plant tissue culture and its agricultural applications, ed. L. Withers and P.G. Alderson, 175–186. London: Butterworth.

    Chapter  Google Scholar 

  • Cruz-Martínez, V., O.A. Castellanos-Hernández, G.J. Acevedo-Hernández, M.I. TorresMorán, M. Gutiérrez-Lomelí, D. Ruvalcaba-Ruiz, F. Zurita, and A. Rodríguez Sahagún. 2017. Genetic fidelity assessment in plants of Sechium edule regenerated via organogenesis. South African Journal of Botany 112: 118–122.

    Article  CAS  Google Scholar 

  • Cui, Y., Y. Deng, K. Zheng, X. Hu, M. Zhu, X. Deng, and R. Xi. 2019. An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Scientific Reports 9: 9634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damiano, C., and M.D.A. Padro. 2008. Frattarelli, A. propagation and establishment in vitro of myrtle (Myrtus communis L.), pomegranate (Punica granatum L.) and mulberry (Morus alba L). Propagation of Ornamental Plants. 8 (1): 3–8.

    Google Scholar 

  • Da Silva, J.A.T., and D. Kulus. 2014. Chrysanthemum biotechnology: Discoveries from the recent literature. Folia Horticulturae 26: 67–77.

    Article  Google Scholar 

  • Da Silva, J.A.T., D. Kulus, X. Zhang, S. Zeng, G. Ma, and A. Piqueras. 2016a. Disinfection of explants for saffron (Crocus sativus) tissue culture. Environmental and Experimental Biology 14: 183–198.

    Article  Google Scholar 

  • Da Silva, J.A.T., B. Winarto, J. Dobránszki, J.C. Cardoso, and S. Zeng. 2016b. Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Horticulturae 28: 57–75.

    Article  Google Scholar 

  • Deein, W., C. Thepsithar, and A. Thongpukdee. 2013. In vitro culture medium sterilization by chemicals and essential oils without autoclaving and growth of Chrysanthemum nodes. Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 7: 407–410.

    Google Scholar 

  • Dodds, J.H., and L.W. Roberts. 1985. Experiments in plant tissue culture. 2nd ed, 21–35. Cambridge University Press.

    Google Scholar 

  • Duan, Y.B., et al. 2016. Evaluation of aqueous chlorine dioxide for disinfecting plant explants. In Vitro Cellular & Developmental Biology/Plant 52: 38–44.

    Article  CAS  Google Scholar 

  • Dychdala, G.R. 1991. Chlorine and chlorine compounds. In Disinfection, sterilization, and preservation, ed. S.S. Block, 4th ed., 131–151. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Enjalric, F., M.P. Carron, and L. Lardet. 1988. Contamination of primary cultures in tropical areas: The case of Hevea brasiliensis. Acta Horticulturae 225: 57–66.

    Article  Google Scholar 

  • Flores, Baez, María Elena, Troncoso Rojas, Rosalba y Tiznado Hernandez, and Martín Ernesto. 2011. Genetic responses induced by Isothiocyanates treatment on the fungal genus Alternaria. Revista Mexicana de Fitopatologia 29 (1): 61–68.

    Google Scholar 

  • Friend, A.L., M.D. Coleman, and J.G. Isebrands. 1994. Carbon allocation to root and shoot systems of woody plants. In Biology of adventitious root formation, ed. T.D. Davis and B.E. Haissig, 343. London: Plenum Press.

    Google Scholar 

  • Gangopadhyay, M., S. Nandi, and S.K.B. Roy. 2017. An efficient ex plant sterilization protocol for reducing microbial contamination of Solanum tuberosum CV. Kufri jyoti for establishing micropropagation in rainy season. Journal of Basic and Applied Plant Science 1: 108.

    Google Scholar 

  • Gautam, B., P. Sharma, Y.C. Gupta, A. Handa, M. Thakur, and P. Sharma. 2019. Studies on the effect of various sterilization procedures for in vitro propagation of carnation (Dianthus caryophyllus L.). International Journal of Current Microbiology and Applied Sciences 8: 481–485.

    Article  CAS  Google Scholar 

  • George, E.F. 1993. Plant propagation by tissue culture. Eversley: Eastern Press.

    Google Scholar 

  • Giles, Kenneth L., and Walter M. Morgan. 1987. Industrial-scale plant micropropagation. Trends in Biotechnology 5 (2): 35–39. https://doi.org/10.1016/0167-7799(87)90035-7.

    Article  Google Scholar 

  • Goodwin, T.W., and E.I. Mercer. 1972. Introduction to plant biochemistry, 1–359. New York: Pergamon Press.

    Google Scholar 

  • Haissig, B.E. 1974. Origins of adventitious roots. New Zealand Journal of Forestry Science 4: 299–307.

    Google Scholar 

  • Haldeman, J.H., R.L. Thomas, and D.L. McKamy. 1987. Use of benomyl and rifampicin for in vitro shoot tip culture of Camellia sinensis and Camellia japonica. Horticultural Science 22: 306–307.

    CAS  Google Scholar 

  • Hameed, M.A., and M.H. Abass. 2006. Study of cytological changes associated with contaminated date palm (Phoenix dactylifera L.) tissue cultures with fungi. Basrah Journal of Veterinary Research 32: 1–27.

    Google Scholar 

  • Herman, E.B. 1996. Microbial contamination of plant tissue cultures. Shrub Oak: Agritech Consultants Inc.

    Google Scholar 

  • Hesami, M., M.H. Daneshvar, and A. Lotfi-Jalalabadi. 2017. Effect of sodium hypochlorite on control of in vitro contamination and seed germination of Ficus religiosa. Iranian Journal of Plant Physiology 7: 2157–2162.

    Google Scholar 

  • Hesami, M., R. Naderi, and M. Yoosefzadeh-Najafabadi. 2018. Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. Biotechnologia 99: 49–57.

    Article  CAS  Google Scholar 

  • Howard, B.H. 1994. Manipulating-rooting potential in stock plants before collecting cuttings. In Biology of adventitious root formation, ed. T.D. Davis and B.E. Haissig, 123–142. New York: Plenum Press.

    Chapter  Google Scholar 

  • Huang, J., L. Wang, N. Ren, F. Ma, and J. Ma. 1997. Disinfection effect of chlorine dioxide on bacteria in water. Water Research 31: 607–613.

    Article  CAS  Google Scholar 

  • Hussain, A., I.A. Qarshi, H. Nazir, and I. Ullah. 2012. Plant tissue culture: Current status and opportunities, recent advances in plant in vitro culture, Annarita Leva and Laura M. R. Rinaldi. IntechOpen.

    Google Scholar 

  • Ibañez, A., M. Valero, and A. Morte. 2005. Establishment and in vitro clonal propagation of the Spanish autochthonous table grapevine cultivar ‘Napoleon’: An improved system where proliferating cultures alternate with rooting ones. Anales de Biologia 27: 211–220.

    Google Scholar 

  • Ikenganyia, E.E., M.A.N. Anikwe, T.E. Omeje, and J.O. Adinde. 2017. Plant tissue culture regeneration and aseptic techniques. Asian Journal of Biotechnology and Bioresource Technology 1: 1–6.

    Article  Google Scholar 

  • Jordan, M.C., and A. McHughen. 1988. Glyphosate-tolerant flax plantsfrom Agrobacterium mediated gene transfer. Plant Cell Rep 7: 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Kataky, A., and P.J. Handique. 2010. Standardization of sterilization techniques prior to in vitro propagation of Andrographis paniculata (Burm.f) Nees. Asian Journal of Science and Technology 10: 119–122.

    Google Scholar 

  • Kendon, J.P., L. Rajaovelona, H. Sandford, R. Fang, J. Bell, and V. Sarasan. 2017. Collecting near mature and immature orchid seeds for ex situ conservation: ‘in vitro collecting’ as a case study. Botanical Studies 58: 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kneifel, W., and W. Leonhardt. 1992. Testing of different antibiotics against Gram-positive and Gram-negative bacteria isolated from plant tissue culture. Plant Cell Tissue and Organ Culture 29: 139–144.

    Article  CAS  Google Scholar 

  • Köse, M., M. DoÄŸan, and G. Sadi. 2020. Surface sterilization of Staurogyne repens (Nees) Kuntze with hydrogen peroxide. Bulletin of Biotechnology 1: 39–42.

    Google Scholar 

  • Koskimäki, J.J., E. Hankala, M. Suorsa, S. Nylund, and A.M. Pirttilä. 2010. Mycobacteria are hidden endophytes in the shoots of rock plant [Pogonatherum paniceum (Lam.) Hack.] (Poaceae). Environmental Microbiology Reports 2: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, S.R., A.M. Priya, and M. Ramesh. 2013. Rapid regeneration and ploidy stability of ‘cv IR36’ indica rice (Oryza sativa L.) confers efficient protocol for in vitro callus organogenesis and Agrobacterium tumefaciens mediated transformation. Botanical Studies 54: 47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyesmu, P.M., C.P.E. Omaliko, and A. Maduekwe. 2004. Basic facts on plant tissue culture: A guide to plant tissue culture practice. Abuja, Nigeria: Dolio-B Press.

    Google Scholar 

  • Lazo-Javalera, M.F., R. Troncoso-Rojas, M.E. Tiznado-Hernández, M.A. Martínez-Tellez, I. Vargas-Arispuro, M.A. Islas-Osuna, and M. Rivera-Domínguez. 2016. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds. Springerplus 5: 1–9.

    Article  CAS  Google Scholar 

  • Leelavathy, S., and P.D. Sankar. 2016. Curbing the menace of contamination in plant tissue culture. Journal of Pure and Applied Microbiology 10: 2145–2152.

    CAS  Google Scholar 

  • Leifert, C., C.E. Morris, and W.M. Waites. 1994. Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: Reasons for contamination problems in vitro. Critical Reviews in Plant Sciences 13: 139–183.

    Article  Google Scholar 

  • Leifert, C., J. Ritchie, and W. Waites. 1991. Contaminants of plant-tissue and cell cultures. World Journal of Microbiology and Biotechnology 7: 452–469.

    Article  CAS  PubMed  Google Scholar 

  • Leifert, C., W.M. Waites, and J.R. Nicholas. 1989. Bacterial contaminants of micropropagated plant cultures. Journal of Applied Microbiology 67: 353–361.

    Google Scholar 

  • Leng, C.E., and L.K. Chan. 2007. Induction of somatic embryogenic callus from the leaves of Pereskia grandifolia. Biotechnology 6: 45–48.

    CAS  Google Scholar 

  • Lin, Tao, Wei Chen, and Bo Cai. 2014. The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment. Environmental Technology 35 (22): 2846–2851. https://doi.org/10.1080/09593330.2014.924566.

    Article  CAS  PubMed  Google Scholar 

  • Madigan, T.M., S.K. Bender, H.D. Buckley, W.M. Sattley, and A.D. Stahl. 2018. Brock biology of microorganisms. 15th ed. Pearson.

    Google Scholar 

  • Mihaljević, I., K. Dugalić, V. TomaÅ¡, M. Viljevac, A. Pranjić, Z. Cmelik, B. PuÅ¡kar, and Z. Jurković. 2013. In vitro sterilization procedures for micropropagation of ‘Oblacinska’ sour cherry. The Journal of Agricultural Science 58: 117–126.

    Google Scholar 

  • Misra, A.N., and M. Misra. 2012. Sterilisation techniques in plant tissue culture. In Plant tissue culture: Totipotency to transgenic, ed. H.P. Sharma, J.V.V. Dogra, and A.N. Misra. Agrobios (India).

    Google Scholar 

  • Naik, Soumendra K., and Pradeep K. Chand. 2011. Tissue culture-mediated biotechnological intervention in pomegranate: A review. Plant Cell Reports 30 (5): 707–721. https://doi.org/10.1007/s00299-010-0969-7.

    Article  CAS  PubMed  Google Scholar 

  • Nepomuceno, C.F., P.T. Fonseca, T.S. Silva, L.M. Oliveira, and J.R.F. Santana. 2014. In vitro germination of Hyptis leucocephala Mart. Ex Benth. and Hyptis platanifolia Mart. ex Benth. Revista Brasileira de Plantas Medicinais 16: 886–895.

    Article  Google Scholar 

  • Ni, Y., G.J. Kubes, and A.R.P. 1995. Heinigen chlorination kinetics of Kraft pulp. Journal of Pulp and Paper Science 21 (1): J30–J36.

    CAS  Google Scholar 

  • Niedz, R.P., and M.G. Bausher. 2002. Control of in vitro contamination of explants from greenhouse and field-grown trees. In Vitro Cellular & Developmental Biology 38: 468–471.

    Article  Google Scholar 

  • Nongalleima, K., T. Dikash Singh, D. Amitabha, L. Deb, and H. Sunitibala Devi. 2014. Optimization of surface sterilization protocol, induction of axillary shoots regeneration in Zingiber zerumbet (L.) Sm. as affected by season. Biological Rhythm Research 45: 317–324.

    Article  CAS  Google Scholar 

  • Norton, M.A., and R.M. Skirvin. 2001. Micropropagation of ‘Norton’ Winegrape. Hort Technology 11: 206–208.

    Article  CAS  Google Scholar 

  • Obuekwe, C.O., and I.J. Osagie. 1989. Morphological changes in infected wilt-resistant and wilt-susceptible oil palm progenies and hydrolytic enzyme activities associated with the Fusarium oxysporum f. sp. elaeidis pathogens. Oléagineux 44: 393–402.

    Google Scholar 

  • Bello, O.A., E.B. Esan, and O.O. Obembe. 2018. Establishing surface sterilization protocol for nodal culture of Solanecio biafrae. IOP Conference Series: Earth and Environmental Science 210: 012007.

    Google Scholar 

  • Omarmor, I.B., A.O. Asemota, C.R. Eke, and E.I. Eziashi. 2007. Fungi contaminants of the oil palm tissue culture in Nigerian Institute for Oil Palm Research (NIFOR). African Journal of Agricultural Research 2: 534–537.

    Google Scholar 

  • Oyebanji, O.B., O. Nweke, O. Odebunmi, N.B. Galadima, M.S. Idris, U.N. Nnodi, A.S. Afolabi, and G.H. Ogbadu. 2009. Simple, effective and economical explant surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology 8: 5395–5399.

    CAS  Google Scholar 

  • Padhi, Minakshi, and S.P. Singh. 2017. Surface sterilization for reducing microbial contamination in in vitro propagation of Lasora (Cordia myxa Roxb.) using nodal segments. International Journal of Current Microbiology and Applied Sciences 6 (8): 836–842.

    Article  CAS  Google Scholar 

  • Parkinson, M., M. Prendergast, and A.J. Sayegh. 1996. Sterilisation of explants and cultures with sodium dichloroisocyanurate. Plant Growth Regulation 20: 61–66.

    Article  CAS  Google Scholar 

  • Pauling, L. 1955. College chemistry, 578. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Pereira, J.E.S., M.L.T. Mattos, and G.R.D. Fortes. 2003. Identification and antibiotic control of endophytic bacteria contaminants in micropropagated potato explants. Pesquisa Agropecuária Brasileira 38: 827–834.

    Article  Google Scholar 

  • Petrini, O. 1991. Fungal endophytes of tree leaves. In Microbial ecology of leaves, ed. J.H. Andrews and S.S. Hirano, 179–197. New York: Springer.

    Chapter  Google Scholar 

  • Pierik, R.L.M. 1987. In vitro culture of higher plants. Dordrecht: Martinus Nijhoff.

    Book  Google Scholar 

  • Purohit, S.D., J. Teixeira Da Silva, and N. Habibi. 2011. Current approaches for cheaper and better micropropagation technologies. International Journal of Plant Developmental Biology 5: 1–36.

    Google Scholar 

  • Quambusch, M., A.M. Pirttilä, M.V. Tejesvi, T. Winkelmann, and M. Bartsch. 2014. Endophytic bacteria in plant tissue culture: Differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiology 34: 524–533.

    Article  CAS  PubMed  Google Scholar 

  • Rady, M.R., M.M. Saker, and M.A. Matter. 2018. In vitro Culture, transformation and genetic fidelity of Milk Thistle. Journal, Genetic Engineering & Biotechnology 16: 563–572.

    Article  CAS  Google Scholar 

  • Rameshkumar, R., A. Karthikeyan, P. Rathinapriya, and M. Ramesh. 2019. Micropropagation of traditional deep water rice (Oryza sativa L.) cv. TNR1 for viable seed production and germplasm conservation. Biocatalysis and Agricultural Biotechnology 18: 100999.

    Article  Google Scholar 

  • Rameshkumar, R., M.J.V. Largia, L. Satish, J. Shilpha, and M. Ramesh. 2016. In vitro mass propagation and conservation of Nilgirianthus ciliatus through nodal explants: A globally endangered, high trade medicinal plant of Western Ghats. Plant Biosystems 151: 204–211.

    Article  Google Scholar 

  • Rathinapriya, P., L. Satish, S. Pandian, R. Rameshkumar, M. Balasangeetha, K. Rakkammal, and M. Ramesh. 2020. Effects of liquid seaweed extracts in improving the agronomic performance of foxtail millet. Journal of Plant Nutrition 43: 1–19.

    Article  CAS  Google Scholar 

  • Rathinapriya, P., L. Satish, R. Rameshkumar, S. Pandian, A.S. Rency, and M. Ramesh. 2019. Role of activated charcoal and amino acids in developing an efficient regeneration system for foxtail millet (Setaria italica (L.) Beauv.) using leaf base segments. Physiology and Molecular Biology of Plants 25: 533–548.

    Article  CAS  PubMed  Google Scholar 

  • Reed, B.M., J. Mentzer, P. Tanprasert, and X. Yu. 1998. Internal bacterial contamination of micropropagated hazelnut: Identification and antibiotic treatment. Plant Cell Tissue and Organ Culture 52: 67–70.

    Article  CAS  Google Scholar 

  • Rency, A.S., S. Pandian, and M. Ramesh. 2018. Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants. Biocatalysis and Agricultural Biotechnology 16: 181–191.

    Article  Google Scholar 

  • Rency, A.S., L. Satish, S. Pandian, P. Rathinapriya, and M. Ramesh. 2016. In vitro propagation and genetic fidelity analysis of alginate-encapsulated Bacopa monnieri shoot tips using Gracilaria salicornia extracts. Journal of Applied Phycology 29: 481–494.

    Article  CAS  Google Scholar 

  • Ribeiro, J.M., S.L. Teixeira, and D.C. Bastos. 2011. In vitro culture of Sequoia sempervirens L. in nutrient medium sterilized with sodium hypochlorite. Ciência Florestal 21: 77–82.

    Article  Google Scholar 

  • Roest, S., and G.S. Bokelmann. 1981. Vegetative propagation of carnation in vitro through multiple shoot development. Scientia Horticulturae 14 (4): 357–366. https://doi.org/10.1016/0304-4238(81)90049-2.

    Article  Google Scholar 

  • Sangwan, R.S., C. Detrez, and N.B.S. Sangwan. 1987. In vitro culture of shoot tip meristems in some higher plants. ActaHorticulturae 212 (11): 661–666.

    Article  Google Scholar 

  • Sarasan, V., G.C. Kite, G.W. Sileshi, and P.C. Stevenson. 2011. Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Reports 30: 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  • Sathyakumar, S. (Ed.). 2016. Bibliography on the fauna and micro flora of the Indian himalayan region. ENVIS Bulletin: Wildlife and Protected Areas. Vol. 17. Wildlife Institute of India, 285.

    Google Scholar 

  • Satish, L., P. Rathinapriya, S.A. Ceasar, A.S. Rency, S. Pandian, R. Rameshkumar, A. Subramanian, and M. Ramesh. 2015. Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cellular & Developmental Biology 52: 140–153.

    Article  CAS  Google Scholar 

  • Satish, L., A.S. Rency, and M. Ramesh. 2018. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants. Biotech 8: 1–11.

    Google Scholar 

  • Sharma, H.C., J.H. Crouch, K.K. Sharma, N. Seetharama, and C.T. Hash. 2002. Applications of biotechnology for crop improvement: Prospects and constraints. Plant Science 163: 381–395.

    Article  CAS  Google Scholar 

  • Shields, R., S.J. Robinson, and P.A. Anslow. 1984. Use of fungicides in plant tissue culture. Plant Cell Reports 3: 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Shiny, A.P., A. Vinoth, and R. Ravindhran. 2019. In vitro regeneration system of Couroupita guianensis using cotyledonary nodes. Asian Journal of Biological Sciences 12: 412–422.

    Article  CAS  Google Scholar 

  • Skirvin, R.M., M.C. Chu, M.L. Mann, H. Young, J. Sullivan, and T. Fermanian. 1986. Stability of tissue culture medium pH as a function of autoclaving, time, and cultured plant material. Plant Cell Reports 5: 292–294.

    Article  CAS  PubMed  Google Scholar 

  • Snow, R. 1985. Improvements in methods for the germination of orchid seeds. American Orchid Society Bulletin (USA) 54 (2): 178–181.

    Google Scholar 

  • Srivastava, N., et al. 2010. Standardization of sterilization protocol for micropropagation of Aconitum heterophyllum-an endangered medicinal herb. Academic Arena 2: 37–42.

    Google Scholar 

  • Swarna, J., and R. Ravindhran. 2013. Influence of additives on enhanced in vitro shoot multiplication of Orthosiphon Aristatus (Blume) Miq. Notulae Scientia Biologicae 5: 338–345.

    Article  Google Scholar 

  • Taha, Hussein, Usama Mohamed Ghazy, Ahmed Mohamed Magdy Gabr, Ahmed Ahmed Ahmed EL-Kazzaz, Eman Abdel Mottaleb Mahmoud Ahmed, and Karima Mohamed Haggag. 2020. Optimization of in vitro culture conditions affecting propagation of mulberry plant. Bulletin of the National Research Centre 44 (1). https://doi.org/10.1186/s42269-020-00314-y.

  • Tazeb, A. 2017. Plant tissue culture technique as a novel tool in plant breeding: A review article. American-Eurasian Journal of Agricultural & Environmental Sciences 17: 111–118.

    CAS  Google Scholar 

  • Teixeira, S.L., J.M. Ribeiro, and M.T. Teixeira. 2006. Use of sodium hypochlorite in sterilization of culture medium for multiplication of Eucalyptus pellita L. Ciência Florestal 18: 185–191.

    Article  Google Scholar 

  • Teixeira da Silva, Jaime A., Budi Winarto, Judit Dobránszki, and Songjun Zeng. 2015. Disinfection procedures for in vitro propagation of Anthurium. Folia Horticulturae 27 (1): 3–14. https://doi.org/10.1515/fhort-2015-0009.

    Article  Google Scholar 

  • Tejesvi, M.V., A.L. Ruotsalainen, A.M. Markkola, and A.M. Pirttilä. 2010. Root endophytes along a primary succession gradient in northern Finland. Fungal Diversity 41: 125–134.

    Article  Google Scholar 

  • Thomas, P., G.K. Swarna, P. Patil, and R.D. Rawal. 2008. Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell Tissue and Organ Culture 93: 39–54.

    Article  Google Scholar 

  • Thorpe, T. 2007. History of plant tissue culture. Molecular Biotechnology 37: 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, A.K., S. Tripathi, M. Lal, and S. Mishra. 2012a. Screening of some chemical disinfectants for media sterilization during in vitro micropropagation of sugarcane. Sugar Technology 14: 364–369.

    Article  CAS  Google Scholar 

  • Tiwari, S., A. Arya, and S. Kumar. 2012b. Standardizing sterilization protocol and establishment of callus culture of sugarcane for enhanced plant regeneration in vitro. Research Journal of Botany 7: 1–7.

    Article  CAS  Google Scholar 

  • Ulrich, K., T. Stauber, and D. Ewald. 2008. Paenibacillus—A predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue and Organ Culture 93: 347–351.

    Article  Google Scholar 

  • Van Bragt, J. 1971. Effects of sterilization on components in nutrient media, 49–101. Netherlands: Veenman H and Zonen N.V.

    Google Scholar 

  • Vargas, D.P., R.S. Formoso, L.F. Dutra, A.M. Newton, J. Santos, and B. Ueno. 2016. Chemical sterilization of in vitro culture for peach rootstock. Colloquium Agrarie 12: 1–6.

    CAS  Google Scholar 

  • Vinoth, A., and R. Ravindhran. 2015. Efficient plant regeneration of watermelon (Citrullus lanatus Thunb.) via somatic embryogenesis and assessment of genetic fidelity using ISSR markers. In Vitro Cellular & Developmental Biology 52: 107–115.

    Article  CAS  Google Scholar 

  • Wong, K.I. 2009. In vitro culture of ‘Dog Ridge’ grapevine. Department of Horticultural Sciences, A&M University, Texas. Undergraduate research scholar. Available electronically from http://hdl.handle.net/1969.1/86500.

  • F. Xavier, Simon Elisa, Berdalet Francisco A., Gracia Francisco, España Joan, Llorens (2014) Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water Air & Soil Pollution 225(4) 10.1007/s11270-014-1921-1.

    Google Scholar 

  • Yanagawa, T., M. Nagai, T. Ogino, and R. Maeguchi. 1995. Applica-tion of disinfectants to orchid seeds, plantlets and mediaas a means to prevent in vitro contamination. Lindleyana 10: 33–36.

    Google Scholar 

  • Yildiz, M., and C. Er. 2002. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum). Naturwissenschaften 89: 259–261.

    Article  CAS  PubMed  Google Scholar 

  • Zinabu, D., E. Gebre, and J. Daksa. 2018. Explants sterilization protocol for in vitro propagation of elite enset (Ensete ventricosum (Welw.) Cheesman) cultivars. Asian Journal of Plant Science & Research 8: 1–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babu, G.A., Mosa Christas, K., Kowsalya, E., Ramesh, M., Sohn, SI., Pandian, S. (2022). Improved Sterilization Techniques for Successful In Vitro Micropropagation. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_1

Download citation

Publish with us

Policies and ethics