Skip to main content

Breeding Chickpea for Climate Resilience: An Overview

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes

Abstract

Chickpea (Cicer arietinum L.) is an important food legume that plays a critical role in ensuring the food and nutritional security of resource-poor smallholder farmers. However, chickpea production is seriously constrained by various climate-induced stresses, such as drought, heat, cold, salinity, diseases and insect pests. These factors often affect the crop independently or in combinations to severely impact chickpea yields. Intensive breeding efforts made during the past few years have led to the development of elite chickpea cultivars with tolerance to key abiotic and biotic stresses; still, there is enough scope to improve productivity. Furthermore, enhancement of genetic gains in chickpea breeding requires integration of rapid generation advancement, genomics-assisted breeding, high-throughput and precise phenotyping and application of novel breeding approaches to harness the favourable alleles in the modern cultivars tolerant to single or multiple stresses leading to the accelerated replacement of climate-vulnerable cultivars with superior varieties that can sustain production under changing climates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Gaur PM, Croser J (2005) Chickpea (Cicer arietinum L.). Gen Resour Chromosome Eng Crop Improv -Grain Legumes 1:185–214

    Google Scholar 

  • Ashraf M, Iram AT (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200:535–546

    Article  Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Secur 12C:31–37

    Article  Google Scholar 

  • Babber S, Sheokand S, Malik S (2000) Nodule structure and functioning in chickpea (Cicer arietinum) as affected by salt. Biol Plant 43:269–273

    Article  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22(1):396

    Article  CAS  PubMed Central  Google Scholar 

  • Baker NR (1991) Possible role of photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Basu PS, Singh DN (2003) Physiology and abiotic stress in chickpea. In: Ali M, Kumar S, Singh NB (eds) Chickpea research in India. Indian Institute of Pulses Research, Kanpur, India, pp 137–167

    Google Scholar 

  • Basu PS, Ali M and Chaturvedi SK (2009) Terminal heat stress adversely affects chickpea productivity in Northern India- Strategies to improve thermo tolerance in the crop under climate change. ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture, 189—193. 23-25 February, New Delhi, India

    Google Scholar 

  • Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I et al (2004) Genotype by environment studies across Australia reveals the importance of phenology for chickpea (Cicer arietinum L.) improvement. Aust J Agric Res 55:1071–1084

    Article  Google Scholar 

  • Berger JD, Milroy SP, Turner NC et al (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180:1–15

    Article  Google Scholar 

  • Bharadwaj C, Tripathi S, Soren KR et al (2021) Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome:e20076. https://doi.org/10.1002/tpg2.20076

  • Black CC, Brown RH, Moore RC (1978) Plant photosynthesis. In: Dobereiner J, Burns RM, Hollander A (eds) limitations and potentials for biological nitrogen fixation in the tropics. Plenum Press, New York, pp 95–110

    Chapter  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL

    Google Scholar 

  • Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 19:47–54

    Article  Google Scholar 

  • Chandra S, Buhariwalla HK, Kashiwagi J, Harikrishna S, Sridevi KR, Krishnamurthy L, Serraj R and Crouch JH (2004) Identifying QTL-linked markers in marker-deficient crops. In: 4th International Crop Science Congress, 26 Sep–1 Oct 2004, Brisbane, Australia

    Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res 90:323–334

    Article  Google Scholar 

  • Clarke H, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Article  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22:185–219

    Article  Google Scholar 

  • Das A, Basu PS, Kumar M et al (2021) Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit. BMC Plant Biol 21:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22(3):193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai PB, Patil BS, Vijayakumar AG, Basavarajappa MP, Subramanya AE, Bharadwaj C, Kulkarni VR (2017) Dry root rot resistance in chickpea: Studies on genetic and molecular variations. Vegetos (Special) 30(1):20–25

    Google Scholar 

  • Devasirvatham V (2012) The basis of chickpea heat tolerance under semi-arid environments. PhD thesis. University of Sydney

    Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  PubMed  Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res 142:9–19

    Article  Google Scholar 

  • Dixit GP, Srivastava AK, Singh NP (2019) Marching towards self-sufficiency in chickpea. Curr Sci 116:239–242

    Article  Google Scholar 

  • FAOSTAT, (2019) http://www.fao.org/faostat/en/#data/QC. Accessed on 4th, April 2021

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2:16112. https://doi.org/10.1038/nplants.2016.112

    Article  PubMed  Google Scholar 

  • Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant 660 transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac661 gene. Theor Appl Genet 127:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Garg T, Mallikarjuna BP, Thudi M et al (2018) Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 214(3):1–11

    Article  Google Scholar 

  • Gaur PM, Gowda CLL, Knights EJ, Warkentin T, Acikgoz N, Yadav SS, Kumar J (2007) Breeding achievements. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, UK, pp 391–416

    Chapter  Google Scholar 

  • Gaur PM, Krishnamurthy L, Kashiwagi L (2008a) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)—current status of research at ICRISAT. Plant Prod Sci 1:3–11. https://doi.org/10.1626/pps.11.3

    Article  Google Scholar 

  • Gaur PM, Kumar J, Gowda CLL, et al. (2008b) Breeding chickpea for early phenology: perspectives, progress and prospects. In: Proceedings of the Fourth International Food Legumes Research Conference, 18–22 Oct 2005, New Delhi, India

    Google Scholar 

  • Gaur PM, Jukanti AK, Samineni S et al (2012a) Climate change and heat stress tolerance in chickpea. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley Blackwell, Weinheim, Germany, pp 839–855. ISBN 978-3-527-33491-9

    Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012b) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gaur PM, Samineni S, Varshney RK (2014a) Drought and heat tolerance in chickpea. Legume Perspetives 3:15–17

    Google Scholar 

  • Gaur PM, Jukanti AK, Srinivasan S (2014b) Climate change and heat stress tolerance in chickpea. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley VCH, Weinheim, Germany, pp 839–855

    Google Scholar 

  • Gaur PM, Thudi M, Srinivasan S, Varshney RK (2014c) Advances in chickpea genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in the Omic Era. Springer, New York, pp 73–94

    Chapter  Google Scholar 

  • Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308

    Article  CAS  Google Scholar 

  • Gaur PM, Samineni S, Thudi M et al (2018) Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed 138(4):389–400. ISSN 01799541

    Article  CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    Article  CAS  PubMed  Google Scholar 

  • Gumber RK, Sarvjeet S (1996) Genetics of flowering time in chickpea: a preliminary report. Crop Improv 23:295–296

    Google Scholar 

  • Gunes A, Cicek N, Inal A, Alpaslan M, Eraslan F, Guneri E et al (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52:368–376

    Article  CAS  Google Scholar 

  • Guo W, Fukatsu T, Ninomiya S (2015) Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods 11(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arientinum L.). Theor Appl Genet 126:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Hegde VS (2010) Genetics of flowering time in chickpea in a semiarid environment. Plant Breed 129:683–687

    Article  CAS  Google Scholar 

  • Jaganathan D, Thudi M, Kale S et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Gen Genomics 290(2):559–571

    Article  CAS  Google Scholar 

  • Jayalakshmi SK, Usharani S, Benagi MDD (2008) Sources of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola. Agric Sci Dig 28:147–148

    Google Scholar 

  • Jha UC, Jha R, Singh NP, Shil S, Kole PC (2018) Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum L.) genotypes. Indian J Agric Sci 88:260–270

    Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Chickpea: nutritional properties and its benefits. Br J Nutr 108:S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Curr Genomics 18(6):557–567. https://doi.org/10.2174/1389202918666170705155252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiyala MDM, Kumara Charyulu D, Nedumaran S, Moses Shyam D, Gumma MK, Bantilan MCS (2016) Agronomic management options for sustaining chickpea yield under climate change scenario. J Agrometeorol 18:41–47

    Article  Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C et al (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaloki P, Devasirvatham V, Tan DK (2019) Chickpea abiotic stresses: combating drought, heat and cold. In: Abiotic and biotic stress in plants. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.83404

    Chapter  Google Scholar 

  • Kalra N, Chakraborty D, Sharma A et al (2008) Effect of temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88

    Google Scholar 

  • Kanouni H, Farayedi Y, Saeid A, Sabaghpour SH (2015) Stability analyses for seed yield of chickpea (Cicer arietinum L.) genotypes in the western cold zone of Iran. J Agric Sci 7(5):219

    Google Scholar 

  • Karadi S, Samineni S, Sajja S, Sharma M et al (2021) Molecular mapping of dry root rot resistance genes in chickpea (Cicer arietinum L.). Euphytica 217:123

    Article  CAS  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V et al (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146:213–222

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006a) Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res 95:171–181

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Singh S, Gaur PM, Upadhyaya HD, Panwar JDS et al (2006b) Relationships between transpiration efficiency and carbon isotope discrimination in chickpea (Cicer arietinum L.). J SAT Agric Res 2:1–3

    Google Scholar 

  • Kashiwagi J, Krishnamurty L, Gaur PM, Chandra S, Upadhyaya HD (2008) Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crops Res 105:64–69

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL et al (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res 170:47–54

    Article  Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Plant Physiol Mol Biol 17:203–213

    Article  CAS  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Khalid MN, Iqbal HF, Tahir A, Ahmad AN (2001) Germination potential of chickpeas (Cicer arietinum) under saline condition. Pak J Biol Sci 4:395–396

    Article  Google Scholar 

  • Khan HA, Siddique KHM, Colmer TD (2017) Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. J Exp Bot 68:2001–2011

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Serraj R (2003) Genetic diversity of drought avoidance root traits in the mini-core germplasm collection of chickpea. Int. Chickpea Pigeonpea Newslett 10:21–24

    Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Gaur PM, Upadhyaya HD, Vadez V (2010) Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Res 119:322–330

    Article  Google Scholar 

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V, Varshney RK, Gowda CLL (2011a) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Res 9:59–69

    Article  Google Scholar 

  • Krishnamurthy L, Turner NC, Gaur PM, Upadhyaya HD, Varshney RK, Siddique KHM, Vadez V (2011b) Consistent variation across years in salinity resistance in a diverse range of chickpea (Cicer arietinum L.) genotypes. J Agron Crop Sci 197:214–227

    Article  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Tobita S et al (2013a) Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Funct Plant Biol 40:1350–1361

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Gowda CLL, Gaur PM, Singh S, Purushothaman R, Varshney RK (2013b) Partitioning coefficient – a trait that contributes to drought tolerance in chickpea. Field Crop Res 149:354–365

    Article  Google Scholar 

  • Kumar J, Haware MP, Smithson JB (1985) Registration of four short-duration, fusarium wilt-resistant kabuli (Garbanzo) chickpea germplasms. Crop Sci 25:576–577

    Article  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea, its bearing on productivity in semi-arid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Kumar J, van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91:67–68

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nayyar H, Bhanwara RK, Upadhyaya HD (2010) Chilling stress effects on reproductive biology of chickpea. J SAT Agric Res 8:1–14

    CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  • Kurets VK, Popov EG (1988) Evaluating the requirements of a genotype in respect of environmental conditions. In: Diagnostika urtoichivosti rastenii stressovym vozdeistviyam. USSR, Leningrad, pp 222–227

    Google Scholar 

  • Lauter DJ, Munns DN (1986) Salt resistance of chickpea genotypes in solutions salinized with NaCl or Na2SO4. Plant Soil 95:271–279

    Article  CAS  Google Scholar 

  • Leport L, Turner NC, French RJ, Tennant D, Thomson BD, Siddique KHM (1998) Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. Eur J Agron 9:295–303

    Article  Google Scholar 

  • Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL et al (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur J Agron 11:279–291

    Article  Google Scholar 

  • Levitt J (1969) Growth and survival of plants at extreme of temperature—a unified concept. Symp Soc Exp Biol 23:395–448

    CAS  PubMed  Google Scholar 

  • Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y (2018) Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front Genet 9:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millan T, Gil J, Rubio J (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121:43–53

    Article  CAS  Google Scholar 

  • Malhotra RS, Singh KB (1990) The inheritance of cold tolerance in chickpea. J Gene Plant Breed 44:227–230

    Google Scholar 

  • Malhotra RS, Singh KB (1991) Gene action for cold tolerance in chickpea. Theor Appl Genet 82:598–601

    Article  CAS  PubMed  Google Scholar 

  • Maliro MFA, McNeil D, Kollmorgen J, Pittock C and Redden B (2004) Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse sources for salt tolerance. New directions for a diverse planet. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia (September 26–October 1)

    Google Scholar 

  • Maliro MFA, McNeil D, Redden B, Kollmorgen JF, Pittock C (2008) Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genet Resour Crop Evol 55:53–63

    Article  Google Scholar 

  • Mallikarjuna BP, Samineni S, Thudi M et al (2017) Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.). Front Plant Sci 8(1140)

    Google Scholar 

  • Mansfield TJ, Atkinson CJ (1990) Stomatal behavior in water stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 241–264

    Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:1–14

    Article  CAS  Google Scholar 

  • Maphosa L, Richards MF, Norton SL, Nguyen GN (2020) Breeding for abiotic stress adaptation in chickpea (Cicer arietinum L.): a comprehensive review. Crop Breed Genet Genom 2(4):e200015

    Google Scholar 

  • McDonald GK, Paulsen GM (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196:47–58

    Article  CAS  Google Scholar 

  • Mir AH, Bhat MA, Fayaz H, Dar SA, Maqbool S, Bhat NA, Thudi M, Mir RR (2019) Assessment of cold tolerance in chickpea accessions in North-Western Himalayas of Jammu and Kashmir. India J Pharmacogn Phytochem 8(4):2268–2274

    Google Scholar 

  • Mugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y, Landry E et al (2019) Quantitative trait loci for cold tolerance in chickpea. Crop Sci 59:573–582

    Article  CAS  Google Scholar 

  • Nguyen GN, Norton SL, Rosewarne GM, James LE, Slater AT (2018) Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS One 13(11):e0207788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39:315–322

    Article  Google Scholar 

  • Pande S, Desai S, Sharma M (2010) Impact of climate change on rainfed crop diseases: current status and future research needs. In: Lead papers. National Symposium on Climate Change and Rainfed Agriculture, 2010 Feb. 18–20. Indian Society of Dryland Agriculture, Central Research Institute for Dryland Agriculture, Hyderabad, pp 55–59

    Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang J, Turner NC, Du YL, Colmer TD, Siddique KHM (2017) Pattern of water use and seed yield under terminal drought in chickpea genotypes. Front Plant Sci 8:1–14

    Article  Google Scholar 

  • Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Paul PJ, Samineni S, Sajja SB, Rathore A, Das RR, Chaturvedi SK et al (2018a) Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 214:27

    Article  CAS  Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR et al (2018b) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19:2166

    Article  PubMed Central  CAS  Google Scholar 

  • Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P (1987) Effects of drought on [1-14C]-oleic and [1-14C]-linoleic acid desaturation in cotton leaves. Physiol Plant 69:147–150

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Pouresmael M, Khavari-Nejad RA, Mozafari J, Najafi F, Moradi F (2013) Efficiency of screening criteria for drought tolerance in chickpea. Arch Agron Soil Sci 59:1675–1693

    Article  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Steward CR (1994) Evidence for chilling induced oxidative stress maize seedling and a regulatory role for hydrogen peroxide. Plant Cell 6:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushothaman R, Thudi M, Krishnamurthy L, Upadhyaya HD, Kashiwagi J, Gowda CLL et al (2015) Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Res 174:1–11

    Article  Google Scholar 

  • Purushothaman R, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27

    Article  Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH et al (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 x JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quirós JJ, McGee RJ, Vandemark GJ, Romanelli T, Sankaran S (2019) Field phenotyping using multispectral imaging in pea (Pisum sativum L.) and chickpea (Cicer arietinum L.). Eng Agric Environ Food 12(4):404–413

    Article  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crops Res 201:146–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H (2020) Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front Plant Sci 10:1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao A, Haware MP (1987) Inheritance of dry root rot (Rhizoctonia bataticola) resistance in chickpea (Cicer arietinum L.). Plant Breed 98:349–352

    Article  Google Scholar 

  • Reddy AT (2016) Identification of resistant sources, inheritance and biochemical basis of resistance to dry root rot caused by Macrophomina phaseolina (Tassi) Goid. in chickpea (Cicer arietinum L.). PhD Thesis. University of Agricultural Sciences GKVK, Bengaluru

    Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Taran B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  • Robertson LD, Singh KB, Ocampo B (1995) A catalog of annual wild Cicer species. ICARDA, Aleppo, Syria

    Google Scholar 

  • Roorkiwal M, Rathore A, Das RR et al (2016) Genome enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK (2018) Development and evaluation of highdensity Axiom ®CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J 16:890–901

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal M, Bharadwaj C, Barmukh R et al (2020) Integrating genomics for chickpea improvement: achievements and opportunities. Theor Appl Genet (TSI) 133(5):1703–1720. ISSN 0040-5752

    Article  Google Scholar 

  • Rubio J, Moreno MT, Moral A, Rubiales D, Gil J (2006) Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and ascochyta blight resistance. Crop Sci 46:2331–2332

    Article  Google Scholar 

  • Sabaghpour SH, Kumar J, Rao TN (2003) Inheritance of growth vigour and its association with other characters in chickpea. Plant Breed 122:542–544

    Article  Google Scholar 

  • Sabaghpour SH, Mahmodi AA, Saeed A, Kamel M, Malhotra RS (2006) Study on chickpea drought tolerance lines under dryland condition of Iran. Indian J Crop Sci 1:70–73

    Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK et al (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133

    Article  Google Scholar 

  • Samineni S (2010) Physiology, genetics and molecular mapping of salt tolerance in chickpea. The University of Western Australia Australia

    Google Scholar 

  • Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.) podding is a particularly sensitive stage. Environ Exp Bot 71:260–268

    Article  CAS  Google Scholar 

  • Samineni S, Kamatam S, Thudi M, Varshney RK, Gaur PM (2016) Vernalization response in chickpea is controlled by a major QTL. Euphytica 207:453–461

    Article  CAS  Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2019) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J. https://doi.org/10.1016/j.cj.2019.08.003

  • Saxena MC, Saxena NP, Mohammed AK (1988) High temperate stress. In: Summerfield RJ (ed) World crops: cool-season food legumes. Kluwer Academic Publisher, Dordrecht, the Netherlands, pp 845–856

    Chapter  Google Scholar 

  • Saxena NP, Krishnamurthy L, Johansen C (1993) Registration of a drought-resistant chickpea germplasm. Crop Sci 33:1424–1424

    Article  Google Scholar 

  • Serraj R, Krishnamurthy L, Upadhyaya HD (2004) Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11:29–32

    Google Scholar 

  • Sharma M, Pande S (2013) Unravelling effects of temperature and soil moisture stress response on development of dry root rot [Rhizoctonia bataticola (Taub.)] Butler in Chickpea. Am J Plant Sci 4:584–589

    Article  Google Scholar 

  • Sharma M, Ghosh R, Pande S (2016) Dry root rot [Rhizoctonia bataticola (Taub.) Butler] an emerging disease of chickpea–where do we stand? Arch Phytopath Plant Prot 48:1–16

    Google Scholar 

  • Sharma KD, Nayyar H (2014) Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC Res Notes 7:1–13

    Article  Google Scholar 

  • Sheokand S, Dhandi S, Swaraj K (1995) Studies on nodule functioning and hydrogen peroxide scavenging enzymes under salt stress in chickpea nodules. Plant Physiol Biochem 33:561–566

    CAS  Google Scholar 

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agric Res 50:375–388

    Article  Google Scholar 

  • Siddique KHM, Brinsmead RB, Knight R, Knights EJ, Paul JG, Rose IA (2000) Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer, Dordrecht, The Netherlands, pp 289–303

    Chapter  Google Scholar 

  • Singh KB (1993) Problems and prospects of stress resistance breeding in chickpea. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-seasons food legumes. John Wiley & Sons, Ltd., Chichester, UK, pp 17–37

    Google Scholar 

  • Singh DP, Rawson HM, Turner NC (1982) Effect of radiation, temperature and humidity on photosynthesis, transpiration and water use efficiency of chickpea (Cicer arietinum L.). Ind Plant Physiol 25:32–39

    Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497

    Article  Google Scholar 

  • Singh KB, Omar M, Saxena MC, Johansen C (1997) Screening for drought resistance in spring chickpea in the Mediterranean Region. J Agron Crop Sci 178(4):227–235

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M et al (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14(11):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M (2019) Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Sci Rep 9(1):5577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S et al (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1–30

    Article  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH et al (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. Plant Biol 18:29

    Google Scholar 

  • Soren KR, Madugula P, Kumar N, Barmukh R et al (2020) Genetic dissection and identification of candidate genes for salinity tolerance using Axiom®CicerSNP array in chickpea. Int J Mol Sci 21(14):5058

    Article  CAS  PubMed Central  Google Scholar 

  • Srinivasan A, Johansen C, Saxena NP (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterization of stress and genetic variation in pod set. Field Crop Res 57:181–193

    Article  Google Scholar 

  • Subbarao GV, Johansen C, Slinkard AE, Rao RCN, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. Crit Rev Plant Sci 14:469–523

    Article  Google Scholar 

  • Summerfield RJ, Wein HC (1980) Effects of photoperiod and air temperature on growth and yield of economic legumes. In: Summerfield RJ, Bunting AH (eds), Advances in legumes science. Volume1 of the Proceedings of the International Legumes Conference, pp. 17—36. Kew, UK

    Google Scholar 

  • Summerfield RJ, Hadley Roberts EH, Minchin FR, Awsthorne S (1984) Sensitivity of chickpea (Cicer arietinum L.) to hot temperatures during the reproductive period. Exp Agr 20:77–93

    Article  Google Scholar 

  • Talekar SC, Lohithaswa HC, Viswanatha KP (2017) Identification of resistant sources and DNA markers linked to genomic region conferring dry root rot resistance in chickpea (Cicer arietinum L.). Pl Breed 136:161–166

    Article  CAS  Google Scholar 

  • Tello J, Montemayor MI, Forneck A, Ibáñez J (2018) A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant Methods 14(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Kumar S, Malik JA et al (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR et al (2014a) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41(11):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M et al (2014b) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thudi M, Chitikineni A, Liu X, He W, Roorkiwal M et al (2016a) Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Rep 6:38636

    Article  CAS  Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta AVSK, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016b) Whole genome re-sequencing reveals genome wide variations among parental lines of mapping populations in chickpea (Cicer arietinum). BMC Plant Biol 16(Suppl. 1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toker C, Lluch C, Tejera NA, Serraj R, Siddique KHM (2007) Abiotic stress. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, UK, pp 474–496

    Chapter  Google Scholar 

  • Tracy SR, Nagel KA, Postma JA, Fassbender H, Wasson A, Watt M (2020) Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci 25(1):105–118

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York, pp 87–103

    Google Scholar 

  • Turner NC (1986) Crop water deficit: a decade of progress. Adv Agron 39:1–51

    Article  Google Scholar 

  • Turner NC (2003) Drought resistance: a comparison of two research frameworks. In: Saxena NP (ed) Management of agricultural drought – agronomic and genetic options. Oxford & IBH Publishing Co., Pvt. Lid, New Delhi, India, pp 103–122

    Google Scholar 

  • Turner NC, Abbo S, Berger JD, Chaturvedi SK, French RJ, Ludwig C et al (2007) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58:187–194

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Dronavalli N, Gowda CLL, Singh S (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51:2079–2094

    Article  Google Scholar 

  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur PM, Saxena KB, Krishnamurthy L et al (2012) Phenotyping chickpeas and pigeonpeas for adaptation to drought. Front Physiol 3:1–10

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop Res 104:123–129

    Article  Google Scholar 

  • Vadez V, Rashmi M, Mithila K, Muralidharan R et al (2012a) Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. Eur J Agron 41:42–51

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer T, Turner N, Siddique K, Gaur PM, Varshney RK (2012b) Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Article  Google Scholar 

  • Vadez V, Kholová J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66:5581–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Murali Mohan S, Gaur PM et al (2013a) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S et al (2013b) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S et al (2013c) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6:1–9

    Article  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Article  Google Scholar 

  • Varshney RK, Thudi M, Pandey MK, Tardieu F et al (2018) Accelerating Genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot 69(13):3293–3312

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A et al (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132:797–816

    Article  CAS  PubMed  Google Scholar 

  • Vieira da Silva J, Naylor AW, Kramer J (1974) Some ultrastructural and enzymatic effects of water stress in cotton (Gossypium L.) leaves. Proc Natl Acad Sci U S A 71:3243–3247

    Article  CAS  Google Scholar 

  • Wang J, Gan YT, Clarke F, McDonald CL (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46:2171–2178

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wery J, Turc O, Lecoeur J (1993) Mechanism of resistance to cold, heat and drought in cool-season legumes, with special reference to chickpea and pea. In: Food legumes, UK, Wiley, pp 271–291

    Google Scholar 

  • Wu G, Miller ND, de Leon N, Kaeppler SM, Spalding EP (2019) Predicting Zea mays flowering time, yield, and kernel dimensions by analyzing aerial images. Front Plant Sci 10:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Paulsen AQ, Guikema JA, Paulsen GM (1995) Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environ Exp Bot 35:43–54

    Article  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Zarco-Tejada PJ, Berni JA, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113(6):1262–1275

    Article  Google Scholar 

  • Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J et al (2019) Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front Plant Sci 10:1270

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallikarjuna, B.P. et al. (2022). Breeding Chickpea for Climate Resilience: An Overview. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_2

Download citation

Publish with us

Policies and ethics