Skip to main content

Functional Molecular Imaging: I

  • Chapter
  • First Online:
Advances in Imaging
  • 1137 Accesses

Key Points (Abstract)

Molecular imaging is defined as non-invasive imaging of cellular and subcellular events; this is having significant changes in the research and clinical disciplines in this era. The combination of the various advances in the fields of engineering, molecular biology, chemistry, immunology, and genetics has resulted in many multi- and interdisciplinary innovations with the goals of the various non-invasive strategies which will be used for the easy identification, risk stratification, and monitoring response to the therapy with very high sensitivity and specificity. Imaging of molecular and cellular functions will go hand in hand with molecular therapies, resulting in a significant increase in the combination of imaging with therapy. Positron emission tomography (PET), PET combined with computed tomography (CT), and single-photon emission computed tomography are having significant advances in recent days. These along with magnetic resonance (MR), optical, CT, and ultrasonographic (US) imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452(7187):580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mazaheri Y, Shukla-Dave A, Muellner A, Hricak H. MRI of the prostate: clinical relevance and emerging applications. J Magn Reson Imaging. 2011;33(2):258–74.

    Article  PubMed  Google Scholar 

  3. Vargas HA, Akin O, Franiel T, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology. 2011;259(3):775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biswal S, Resnick DL, Hoffman JM, Gambhir SS. Molecular imaging: integration of molecular imaging into the musculoskeletal imaging practice. Radiology. 2007;244(3):651–71.

    Article  PubMed  Google Scholar 

  5. Pysz MA, Willmann JK. Targeted contrastenhanced ultrasound: an emerging technology in abdominal and pelvic imaging. Gastroenterology. 2011;140(3):785–90.

    Article  PubMed  Google Scholar 

  6. Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8(11):677–88.

    Article  CAS  PubMed  Google Scholar 

  7. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65(7):500–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607.

    Article  CAS  PubMed  Google Scholar 

  9. Zavaleta CL, Kircher MF, Gambhir SS. Raman’s “effect” on molecular imaging. J Nucl Med. 2011;52(12):1839–44.

    Article  CAS  PubMed  Google Scholar 

  10. Islam T, Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2009;5(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  11. Chen JW, Querol Sans M, Bogdanov A Jr, Weissleder R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology. 2006;240(2):473–81.

    Article  PubMed  Google Scholar 

  12. Louie AY, Hüber MM, Ahrens ET, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol. 2000;18(3):321–5.

    Article  CAS  PubMed  Google Scholar 

  13. Nahrendorf M, Sosnovik D, Chen JW, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008;117(9):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ronald JA, Chen JW, Chen Y, et al. Enzymesensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120(7):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elias DR, Thorek DL, Chen AK, Czupryna J, Tsourkas A. In vivo imaging of cancer biomarkers using activatable molecular probes. Cancer Biomark. 2008;4(6):287–305.

    Article  CAS  PubMed  Google Scholar 

  16. Buchner AM, Shahid MW, Heckman MG, et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology. 2010;138(3):834–42.

    Article  PubMed  Google Scholar 

  17. Wolfsen HC. New technologies for imaging of Barrett’s esophagus. Surg Oncol Clin N Am. 2009;18(3):487–502.

    Article  PubMed  Google Scholar 

  18. Gibbs-Strauss SL, Rosenberg M, Clough BL, Troyan SL, Frangioni JV. First-in-human clinical trials of imaging devices: an example from optical imaging. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2001–4.

    Google Scholar 

  19. Matsui A, Tanaka E, Choi HS, et al. Realtime intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery. 2010;148(1):87–95.

    Article  PubMed  Google Scholar 

  20. Troyan SL, Kianzad V, Gibbs-Strauss SL, et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 2009;16(10):2943–52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Willmann JK, Lutz AM, Paulmurugan R, et al. Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology. 2008;248(3):936–44.

    Article  PubMed  PubMed Central  Google Scholar 

  22. De la Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3(9):557–62.

    Article  PubMed  CAS  Google Scholar 

  23. Kircher MF, De la Zerda A, Jokerst J, et al. A brain tumor molecular imaging strategy using a novel triple-modality nanoparticle. Nat Med. (in press)

    Google Scholar 

  24. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  25. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004;110(21):3378–83.

    Article  PubMed  Google Scholar 

  26. Klibanov AL, Rasche PT, Hughes MS, et al. Detection of individual microbubbles of ultrasound contrast agents: imaging of freefloating and targeted bubbles. Investig Radiol. 2004;39(3):187–95.

    Article  Google Scholar 

  27. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging. 2002;16(4):394–406.

    Article  PubMed  Google Scholar 

  28. Sosnovik DE, Nahrendorf M, Weissleder R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation. 2007;115(15):2076–86.

    Article  PubMed  Google Scholar 

  29. Shen T, Weissleder R, Papisov M, Bogdanov A Jr, Brady TJ. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med. 1993;29(5):599–604.

    Article  CAS  PubMed  Google Scholar 

  30. Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol. 2002;9(Suppl 2):S304–6.

    Article  PubMed  Google Scholar 

  31. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.

    Article  PubMed  Google Scholar 

  32. Swanson SD, Kukowska-Latallo JF, Patri AK, et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine. 2008;3(2):201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64.

    Article  CAS  PubMed  Google Scholar 

  34. Ghaghada KB, Ravoori M, Sabapathy D, Bankson J, Kundra V, Annapragada A. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One. 2009;4(10):e7628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Morawski AM, Winter PM, Crowder KC, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med. 2004;51(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  36. Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  37. Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23(8):983–7.

    Article  CAS  PubMed  Google Scholar 

  38. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE. CEST and PARACEST MR contrast agents. Acta Radiol. 2010;51(8):910–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Woods M, Woessner DE, Sherry AD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev. 2006;35(6):500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res. 2003;36(10):783–90.

    Article  CAS  PubMed  Google Scholar 

  41. Querol M, Bogdanov A Jr. Environment-sensitive and enzyme-sensitive MR contrast agents. Handb Exp Pharmacol. 2008;185(Pt 2):37–57.

    Article  CAS  Google Scholar 

  42. Perez JM, Josephson L, O’Loughlin T, Högemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol. 2002;20(8):816–20.

    Article  CAS  PubMed  Google Scholar 

  43. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc. 2003;125(34):10192–3.

    Article  CAS  PubMed  Google Scholar 

  44. Grimm J, Perez JM, Josephson L, Weissleder R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 2004;64(2):639–43.

    Article  CAS  PubMed  Google Scholar 

  45. Perez JM, Grimm J, Josephson L, Weissleder R. Integrated nanosensors to determine levels and functional activity of human telomerase. Neoplasia. 2008;10(10):1066–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo B, Pagel MDA. A PARACEST MRI contrast agent to detect enzyme activity. J Am Chem Soc. 2006;128(43):14032–3.

    Article  CAS  PubMed  Google Scholar 

  47. Chauvin T, Durand P, Bernier M, et al. Detection of enzymatic activity by PARACEST MRI: a general approach to target a large variety of enzymes. Angew Chem Int Ed Engl. 2008;47(23):4370–2.

    Article  CAS  PubMed  Google Scholar 

  48. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63(23):8122–5.

    CAS  PubMed  Google Scholar 

  49. Golman K, Olsson LE, Axelsson O, Månsson S, Karlsson M, Petersson JS. Molecular imaging using hyperpolarized 13C. Br J Radiol 2003;76(Spec No 2):S118–S127.

    Google Scholar 

  50. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem. 2002;13(3):554–60.

    Article  CAS  PubMed  Google Scholar 

  51. Viale A, Aime S. Current concepts on hyperpolarized molecules in MRI. Curr Opin Chem Biol. 2010;14(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  52. Golman K, Petersson JS, Ardenkjaer-Larsen JH, et al. Dynamic in vivo oxymetry using overhauser enhanced MR imaging. J Magn Reson Imaging. 2000;12(6):929–38.

    Article  CAS  PubMed  Google Scholar 

  53. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H. Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials. 2010;31(25):6537–44.

    Article  PubMed  CAS  Google Scholar 

  54. Hyafil F, Cornily JC, Feig JE, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636–41.

    Article  CAS  PubMed  Google Scholar 

  55. Kong WH, Lee WJ, Cui ZY, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials. 2007;28(36):5555–61.

    Article  CAS  PubMed  Google Scholar 

  56. Elrod DB, Partha R, Danila D, Casscells SW, Conyers JL. An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid. Nano medicine. 2009;5(1):42–5.

    CAS  Google Scholar 

  57. Aviv H, Bartling S, Kieslling F, Margel S. Radiopaque iodinated copolymeric nanoparticles for x-ray imaging applications. Biomaterials. 2009;30(29):5610–6.

    Article  CAS  PubMed  Google Scholar 

  58. Galperin A, Margel D, Baniel J, Dank G, Biton H, Margel S. Radiopaque iodinated polymeric nanoparticles for x-ray imaging applications. Biomaterials. 2007;28(30):4461–8.

    Article  CAS  PubMed  Google Scholar 

  59. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  60. Jackson PA, Rahman WN, Wong CJ, Ackerly T, Geso M. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol. 2010;75(1):104–9.

    Article  PubMed  Google Scholar 

  61. Aydogan B, Li J, Rajh T, et al. AuNP-DG: deoxyglucose-labeled gold nanoparticles as x-ray computed tomography contrast agents for cancer imaging. Mol Imaging Biol. 2010;12(5):463–7.

    Article  PubMed  Google Scholar 

  62. Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cormode DP, Roessl E, Thran A, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004;110(21):3378–83.

    Article  PubMed  Google Scholar 

  65. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  66. Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol. 2010;65(7):567–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem. 2009;16(5):627–42.

    Article  CAS  PubMed  Google Scholar 

  68. Deshpande N, Pysz MA, Willmann JK. Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis. 2010;13(2):175–88.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheng KT. Sonicated human serum microspheres. In: Molecular imaging and contrast agent database. Bethesda, MD: MICAD; 2004.

    Google Scholar 

  70. Klibanov AL. Molecular imaging with targeted ultrasound contrast microbubbles. Ernst Schering Res Found Workshop. 2005;49:171–91.

    Article  Google Scholar 

  71. de Jong N, Hoff L. Ultrasound scattering properties of Albunex microspheres. Ultrasonics. 1993;31(3):175–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). Functional Molecular Imaging: I. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics