Skip to main content
Log in

AuNP-DG: Deoxyglucose-Labeled Gold Nanoparticles as X-ray Computed Tomography Contrast Agents for Cancer Imaging

  • Rapid Communication
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To study the feasibility of using 2-deoxy-d-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments.

Procedures

Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-d-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package.

Results

Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices.

Conclusions

Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Weissleder R (2006). Science 312:1168–1171

    Article  CAS  PubMed  Google Scholar 

  2. Lee TY (2002) Trends in Biotech 20:S3–S10

    Article  Google Scholar 

  3. Kao CY, Hoffman EA, Beck KC et al (2003) Acad Radiol 10:475–483

    Article  PubMed  Google Scholar 

  4. Schmiedl UP, Krause W, Leike J et al (1999) Acad Radiol 6:164–169

    Article  CAS  PubMed  Google Scholar 

  5. Fruman SA, Harned RK II, Marcus D et al (1994) Acad Radiol 1:151–153

    Article  CAS  PubMed  Google Scholar 

  6. Vera DR, Mattrey RF (2002) Acad Radiol 9:784–792

    Article  PubMed  Google Scholar 

  7. Bonvento M, Moore W, Button T et al (2003) Acad Radiol 13:979–985

    Article  Google Scholar 

  8. Miyamoto A, Okimoto H, Shinohara H et al (2006) Eur Radiol 16:1050–1053

    Article  PubMed  Google Scholar 

  9. Yu SB, Watson AD (1999) Chem Rev 99:2352–2378

    Article  Google Scholar 

  10. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) Nat Mater 5:118–122

    Article  CAS  Google Scholar 

  11. Qian X, Peng XH, Ansari DO et al (2008) Nat Biotechnol 26:83–90

    Article  CAS  PubMed  Google Scholar 

  12. Popovtzer R, Agrawal A, Kotov NA et al (2008) Nano Lett 8:4593–4596

    Article  CAS  PubMed  Google Scholar 

  13. Cai QY, Kim SH, Choi KS, Kim et al (2007) Invest. Radiol 42:797–806

  14. Kim D, Park S, Lee JH et al (2007) J Am Chem Soc 129:7661–7665

    Article  CAS  PubMed  Google Scholar 

  15. Hainfeld JF, Slatkin DN, Focella TMet al (2006) Br J Radiol 79:248–253

    Article  CAS  PubMed  Google Scholar 

  16. Hayat MA (1991) Colloidal gold: principles, methods and applications, volume 1. Academic, San Diego

  17. Slot JW, Geuze HJ (1985) Eur J Cell Biol 38:87–93

    CAS  PubMed  Google Scholar 

  18. Hermanson GT (2008) Bioconjugate techniques, 2nd ed. Elsevier/Academic Press, London

  19. Ambrose J, Hounsfield G (1973) Br J Radiol 46:1016–1047

    Article  Google Scholar 

  20. Su H, Bodenstein C, Dumont R et al (2006) Clin Cancer Res 12:5659–5667

    Article  CAS  PubMed  Google Scholar 

  21. Chung JK, Lee YJ, Kim SK et al (2004) Nucl Med Commun 25:11–17

    Article  CAS  PubMed  Google Scholar 

  22. Barnett JEG, Holman GD, Munday KA (1973) Biochem J 131:211–221

    CAS  PubMed  Google Scholar 

  23. Lampidis TJ, Kurtoglu M et al (2004) Cancer Chemother Pharmacol 53:116–122

    Article  PubMed  Google Scholar 

  24. Landau BR, Spring-Robinson CL, Muzic RF Jr et al (2007) Am J Physiol Endocrinol Metab 293:E237–E245

    Article  CAS  PubMed  Google Scholar 

  25. Etzioni R, Urban N, Ramsey S et al (2003) Nat Rev Cancer 3:242–252

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Research Training in Medical Physics 5 T32-EB002103-19. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Aydogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydogan, B., Li, J., Rajh, T. et al. AuNP-DG: Deoxyglucose-Labeled Gold Nanoparticles as X-ray Computed Tomography Contrast Agents for Cancer Imaging. Mol Imaging Biol 12, 463–467 (2010). https://doi.org/10.1007/s11307-010-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0299-8

Key words

Navigation