Skip to main content

Molecular Imaging and Instrumentation

  • Chapter
  • First Online:
Advances in Imaging
  • 1159 Accesses

Key Points (Abstract)

The development of medical technology has warranted advanced patient care, and the better, faster, easily available, cost-effective, and, most important, non-invasive imaging is the requirement of the day. With this, the evaluation of the anatomy, function, or molecular-biological components is needed for the study of the patients. These imaging modalities can be individual or combined, providing both anatomical and molecular functional information.

For this, understanding the imaging modality is very important for proper functioning especially in cases of hybrid imaging. The physical components are needed to be understood along with the instrumentation functioning that needs to be analyzed for proper applications and also for future advancements in that modality, which qualifies the above-mentioned criteria as an ideal imaging modality that till date does not exist.

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are the imaging modalities that are based on the concept of detection of gamma rays, which leave the body when the radiotracer is being injected. The sensitivity of these modalities is important, and PET has the detection capability of the picomolar tracer amounts in vivo, and with the available technology, it is up to millimetre (PET) or submillimetre (SPECT) spatial resolution. Due to this, these modalities are being used in various clinical and preclinical applications. The basic component is that the detectors used in both positron emission tomography and single photon emission computed tomography are the combination of scintillation crystals where it is converted into incident gamma radiation to visible scintillation light. The photodetector component in this uses this scintillation light and converts it into electrical pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedland GW, Thurber BD. The birth of CT. AJR Am J Roentgenol. 1996;167:1365–70. https://doi.org/10.2214/ajr.167.6.8956560.

    Article  CAS  PubMed  Google Scholar 

  2. Rinck PA. Magnetic resonance in medicine: the basic textbook of the European magnetic resonance forum. 12th revised and enlarged edition. Hoboken, NJ: Blackwell Scientific Publications; 2018.

    Google Scholar 

  3. Moser E, Laistler E, Schmitt F, Kontaxis G. Ultra-high field NMR and MRI— the role of magnet technology to increase sensitivity and specificity. Front Phys. 2017;5:33. https://doi.org/10.3389/fphy.2017.00033.

    Article  Google Scholar 

  4. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging. 2011;2:161–9. https://doi.org/10.1007/s13244-010-0063-2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beyer T, Townsend DW, Czernin J, Freudenberg LS. The future of hybrid imaging—part 2: PET/CT. Insights Imaging. 2011;2:225–34. https://doi.org/10.1007/s13244-011-0069-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beyer T, Freundenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: pet/mr, small-animal imaging and beyond. Insights Imaging. 2011;3:189. https://doi.org/10.1007/s13244-011-0136-x.

    Article  Google Scholar 

  7. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006 Jul 7;51(13):R99–115.

    Article  Google Scholar 

  8. Madsen MT, Anderson JA, Halama JR, Kleck J, Simpkin DJ, Votaw JR, et al. AAPM task group 108: PET and PET/CT shielding requirements. Med Phys. 2006;33:4–15.

    Article  Google Scholar 

  9. Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.

    CAS  PubMed  Google Scholar 

  10. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci. 1994;41:2793–9. https://doi.org/10.1109/23.340649.

    Article  Google Scholar 

  11. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. 2008;53:R1–39. https://doi.org/10.1088/0031-9155/53/4/R01.

    Article  CAS  PubMed  Google Scholar 

  12. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33:166–79. https://doi.org/10.1053/snuc.2003.127307.

    Article  PubMed  Google Scholar 

  13. Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:200–6.

    Article  Google Scholar 

  14. Chen J, Caputlu-Wilson SF, Shi H, Galt JR, Faber TL, Garcia EV. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol. 2006;13:43–9.

    Article  Google Scholar 

  15. Seret A, Nguyen D, Bernard C. Quantitative capabilities of four state-of-the-art SPECT-CT cameras. EJNMMI Res. 2012;2:45. https://doi.org/10.1186/2191-219X-2-45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huellner MW, Strobel K. Clinical applications of SPECT/CT in imaging the extremities. Eur J Nucl Med Mol Imaging. 2014;41(Suppl. 1):S50–8. https://doi.org/10.1007/s00259-013-2533-5.

    Article  PubMed  Google Scholar 

  17. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med. 2008;49:1305–19. https://doi.org/10.2967/jnumed.107.050195.

    Article  PubMed  Google Scholar 

  18. Anger HO. Scintillation camera. Rev Sci Instrum. 1958;29:27–33. https://doi.org/10.1063/1.1715998.

    Article  CAS  Google Scholar 

  19. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59. https://doi.org/10.1088/0031-9155/57/21/R119.

    Article  PubMed  Google Scholar 

  20. Yeo JM, Lim X, Khan Z, Pal S. Systematic review of the diagnostic utility of SPECT imaging in dementia. Eur Archiv Psychiatry Clin Neurosci. 2013;263:539–52. https://doi.org/10.1007/s00406-013-0426-z.

    Article  Google Scholar 

  21. Finucane CM, Murray I, Sosabowski JK, Foster JM, Mather SJ. Quantitative accuracy of low-count SPECT imaging in phantom and in vivo mouse studies. Int J Mol Imaging. 2011;2011:8.

    Article  Google Scholar 

  22. Huellner MW, Strobel K. Clinical applications of SPECT/CT in imaging the extremities. Eur J Nucl Med Mol Imaging. 2014;41(Suppl. 1):S50–8. https://doi.org/10.1007/s00259-013-2533-5.

    Article  PubMed  Google Scholar 

  23. Hobbs SB, Hamon BW, Oates ME. A spectrum of SPECT/CT image fusion applications in daily clinical practice. Clin Nucl Med. 2013;38:e336–41. https://doi.org/10.1097/RLU.0b013e318281625a.

    Article  PubMed  Google Scholar 

  24. Pretorius PH, Dahlberg ST, King MA. Investigation of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Med. 2016;57:532.

    Google Scholar 

  25. Jackson PA, Beauregard JM, Hofman MS, Kron T, Hogg A, Hicks RJ. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging. Med Phys. 2013;40:112503. https://doi.org/10.1118/1.4824318.

    Article  PubMed  Google Scholar 

  26. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, Smidt MP. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46:1194–200.

    PubMed  Google Scholar 

  27. van der Meel R, Gallagher WM, Oliveira S, O’Connor AE, Schiffelers RM, Byrne AT. Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov Today. 2010;15:102–14.

    Article  Google Scholar 

  28. Labbe JP. SPECT/CT emerges from the shadow of PET/CT. Biophoton Int. 2003;10:50–7.

    Google Scholar 

  29. Hijnen NM, de Vries A, Nicolay K, Grüll H. Dual-isotope 111In/177Lu SPECT imaging as a tool in molecular imaging tracer design. Contrast Media Mol Imaging. 2012;7:214–22.

    Article  CAS  Google Scholar 

  30. Even-Sapir E, Flusser G, Lerman H, Lievshitz G, Metser U. SPECT/multislice low-dose CT: a clinically relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy. J Nucl Med. 2007;48:319–24.

    PubMed  Google Scholar 

  31. Wu Y, Ren G, Meng F, Chen X, Ding D, Li H, et al. Ultralow-concentration Sm codoping in CsI:Tl scintillator: a case of little things can make a big difference. Opt Mater. 2014;38:297–300.

    Article  CAS  Google Scholar 

  32. Wu Y, Ren G, Meng F, Chen X, Ding D, Li H, et al. Ultralow-concentration Sm codoping in CsI:Tl scintillator: a case of little things can make a big difference. Opt Mater. 2014;38:297–300.

    Article  CAS  Google Scholar 

  33. Degenhardt C, Prescher G, Frach T, et al. The digital silicon photomultiplier—a novel sensor for the detection of scintillation light. In Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/MIC ‘09); October 2009; pp. 2383–2386.

    Google Scholar 

  34. Photomultiplier Tubes (PMTs). Exp Methods Phys Sci. 2013;45:69–82.

    Google Scholar 

  35. Schug D, Wehner J, Dueppenbecker PM, et al. ToF performance evaluation of PET modules with digital silicon photomultiplier technology during MR operation. IEEE Trans Nucl Sci. 2015;62(3):658–63.

    Article  CAS  Google Scholar 

  36. Moszynski M, Plettner C, Nassalski A, Szczesniak T, Swiderski L, Syntfeld-Kazuch A, et al. A comparative study of silicon drift detectors with photomultipliers, avalanche photodiodes and PIN photodiodes in gamma spectrometry with LaBr crystals. IEEE Trans Nucl Sci. 2009;56:1006–11.

    Article  CAS  Google Scholar 

  37. Braga LHC, Gasparini L, Grant L, Henderson RK, Massari N, Perenzoni M, Stoppa D, Walker R. A fully digital 8 × 16 SiPM Array for PET applications with per-pixel TDCs and real-time energy output. IEEE J Solid State Circuits. 2014;49:301–14. https://doi.org/10.1109/JSSC.2013.2284351.

    Article  Google Scholar 

  38. Gallivanoni A, Rech I, Ghioni M. Progress in quenching circuits for single photon avalanche diodes. IEEE Trans Nucl Sci. 2010;57:3815–26. https://doi.org/10.1109/TNS.2010.2074213.

    Article  Google Scholar 

  39. Palubiak DP, Li Z, Deen MJ. Afterpulsing characteristics of free-running and time-gated single-photon avalanche diodes in 130-nm CMOS. IEEE Trans Electron Devices. 2015;62:3727–33. https://doi.org/10.1109/TED.2015.2475126.

    Article  Google Scholar 

  40. Bonanno G, Finocchiaro P, Pappalardo A, Billotta S, Cosentino L, Belluso M, Di Mauro S, Occhipinti G. Precision measurements of photon detection efficiency for SiPM detectors. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2009;610:93–7. https://doi.org/10.1016/j.nima.2009.05.117.

    Article  CAS  Google Scholar 

  41. Yoon HS, Ko GB, Kwon SI, Lee CM, Ito M, Chan SI, Lee DS, Hong SJ, Lee JS. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53:608–14. https://doi.org/10.2967/jnumed.111.097501.

    Article  CAS  PubMed  Google Scholar 

  42. Pro T, Ferri A, Gola A, Serra N, Tarolli A, Zorzi N, Piemonte C. New developments of near-UV SiPMs at FBK. IEEE Trans Nucl Sci. 2013;60:2247–53. https://doi.org/10.1109/TNS.2013.2259505.

    Article  Google Scholar 

  43. Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009;6(6):1778–98.

    Article  Google Scholar 

  44. Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron. 2005;36(3):195–217.

    Article  Google Scholar 

  45. Herzog H, Lerche C. Advances in clinical PET/MRI instrumentation. PET Clin. 2016;11:95–103. https://doi.org/10.1016/j.cpet.2015.09.001.

    Article  PubMed  Google Scholar 

  46. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54. https://doi.org/10.1088/0031-9155/60/4/R115.

    Article  PubMed  Google Scholar 

  47. Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89. https://doi.org/10.1118/1.3633909.

    Article  PubMed  Google Scholar 

  48. Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol. 2018;91:20160363. https://doi.org/10.1259/bjr.20160363.

    Article  PubMed  Google Scholar 

  49. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106. https://doi.org/10.1088/0031-9155/56/10/013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639–47.

    PubMed  Google Scholar 

  51. Spanoudaki VC, Mann AB, Otte AN, Konorov I, Torres-Espallardo I, Paul S, et al. Use of single photon counting detector arrays in combined PET/MR: characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector. J Instrum. 2007;2:P12002. https://doi.org/10.1088/1748-0221/2/12/P12002.

    Article  Google Scholar 

  52. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65. https://doi.org/10.1038/nm1700.

    Article  CAS  PubMed  Google Scholar 

  53. Spanoudaki VC, Levin CS. Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors. 2010;10:10484–505. https://doi.org/10.3390/s101110484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22. https://doi.org/10.2967/jnumed.111.092726.

    Article  PubMed  Google Scholar 

  55. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToFPET component of the GE SIGNA PET/MR system. Med Phys. 2016;43:2334–43. https://doi.org/10.1118/1.4945416.

    Article  PubMed  Google Scholar 

  56. Mandai S, Jain V, Charbon E. A 780×800 μm2 multichannel digital silicon photomultiplier with column-parallel time-to-digital converter and basic characterization. IEEE Trans Nucl Sci. 2014;61:44–52. https://doi.org/10.1109/TNS.2013.2294022.

    Article  Google Scholar 

  57. Lecoq P, Auffray E, Brunner S, Hillemanns H, Jarron P, Knapitsch A, et al. Factors influencing time resolution of scintillators and ways to improve them. IEEE Trans Nucl Sci. 2010;57:2411–6. https://doi.org/10.1109/TNS.2010.2049860.

    Article  CAS  Google Scholar 

  58. Hutton BF. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41:3–16.

    Article  Google Scholar 

  59. Ritt P, Sanders J, Kuwert T. SPECT/CT technology. Clin Transl Imaging. 2014;2:445–57. https://doi.org/10.1007/s40336-014-0086-7.

    Article  Google Scholar 

  60. Walrand S, Hesse M, Jamar F. Update on novel trends in PET/CT technology and its clinical applications. Br J Radiol. 2018;91:20160534.

    Article  Google Scholar 

  61. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

    Article  Google Scholar 

  62. Gundacker S, Acerbi F, Auffray E, Ferri A, Gola A, Nemallapudi MV, et al. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J Instrum. 2016;11:P08008.

    Article  Google Scholar 

  63. Chun SY. The use of anatomical information for molecular image reconstruction algorithms: attenuation/scatter correction, motion compensation, and noise reduction. Nucl Med Mol Imaging. 2016;50:13–23.

    Article  Google Scholar 

  64. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging. 2011;2:161–9.

    Article  Google Scholar 

  65. Yamamoto S, Okumura S, Kato N, Yeom JY. Timing measurements of lutetium based scintillators combined with silicon photomultipliers for TOF-PET system. J Instrum. 2015;10:T09002.

    Article  Google Scholar 

  66. Schug D, Wehner J, Dueppenbecker PM, Weissler B, Gebhardt P, Goldschmidt B, Solf T, Kiessling F, Schulz V. ToF performance evaluation of PET modules with digital silicon photomultiplier technology during MR operation. IEEE Trans Nucl Sci. 2015c;62:658–63.

    Article  CAS  Google Scholar 

  67. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639–47.

    PubMed  Google Scholar 

  68. Spanoudaki VC, Mann AB, Otte AN, Konorov I, Torres-Espallardo I, Paul S, et al. Use of single photon counting detector arrays in combined PET/MR: characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector. J Instrum. 2007;2:P12002. https://doi.org/10.1088/1748-0221/2/12/P12002.

    Article  Google Scholar 

  69. Buzhan P, Dolgoshein B, Filatov L, Ilyin A, Kaplin V, Karakash A, Klemin S, Mirzoyan R, Otte AN, Popova E, Sosnovtsev V, Teshima M. Large area silicon photomultipliers: performance and applications. Nucl Instrum Methods Phys Res A. 2006;567:78–82.

    Article  CAS  Google Scholar 

  70. Kolb A, Lorenz E, Judenhofer MS, Renker D, Lankes K, Pichler BJ. Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol. 2010;55:1815–32.

    Article  Google Scholar 

  71. Aull BF, Loomis AH, Young DJ, Heinrichs RM, Felton BJ, Daniels PJ, Landers DJ. Geiger-mode avalanche photodiodes for three-dimensional imaging. Linc Lab J. 2002;13:335–50.

    Google Scholar 

  72. Schuette DR, Westhoff RC, Loomis AH, Young DJ, Ciampi JS, Aull BF, Reich RK. Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays. Proc SPIE. 2010;7681(1):76810P.

    Article  Google Scholar 

  73. Herbert DJ, Moehrs S, D’Ascenzo N, Belcari N, Del Guerra A, Morsani F. The silicon photomultiplier for application to high-resolution positron emission tomography. Nucl Instrum Methods Phys Res. 2007;A573:84–7.

    Article  Google Scholar 

  74. Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, et al. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med. 2015;56(9):1378–85.

    Article  CAS  Google Scholar 

  75. Zhang J, Knopp MI, Knopp MV. Sparse detector configuration in SiPM digital photon counting PET: a feasibility study. Mol Imaging Biol. 2018. https://doi.org/10.1007/s11307-018-1250-7.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). Molecular Imaging and Instrumentation. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics