Skip to main content

Advertisement

Log in

The origins of SPECT and SPECT/CT

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, PA: Elsevier Health Sciences; 2003. p. 299–324.

    Google Scholar 

  2. Zeng GL, Galt JR, Wernick MN, Mintzer RA, Aarsvold JN. Single-photon emission computed tomography. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 127–52.

    Chapter  Google Scholar 

  3. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.

    Article  PubMed  Google Scholar 

  4. Hutton BF, Beekman FJ. SPECT and SPECT/CT. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS, editors. Molecular imaging: principles and practice. Shelton: People’s Medical Publishing House - USA; 2010. p. 40–53.

    Google Scholar 

  5. Webb S. From the Watching of Shadows: the origins of radiological tomography. Bristol: Adam Hilger; 1990.

    Google Scholar 

  6. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80:653–62.

    Google Scholar 

  7. Kuhl DE, Hale J, Eaton WL. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology. 1966;87:278–84.

    CAS  PubMed  Google Scholar 

  8. Kuhl DE, Edwards RQ. The Mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology. 1970;96:563–70.

    CAS  PubMed  Google Scholar 

  9. Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, et al. A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS – the Aberdeen Section Scanner). Br J Radiol. 1973;46:262–71.

    Article  CAS  PubMed  Google Scholar 

  10. Anger HO. Scintillation camera. Rev Sci Instrum. 1958;29:27–33.

    Article  CAS  Google Scholar 

  11. Anger HO, Price DC, Yost PE. Transverse section tomography with the scintillation camera. J Nucl Med. 1967;8:314.

    Google Scholar 

  12. Budinger TF, Gullberg GT. Three dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci. 1974;21:2–19.

    Article  Google Scholar 

  13. Muellehner G. A tomographic scintillation camera. Phys Med Biol. 1971;16:87–96.

    Article  Google Scholar 

  14. Huesman RH, Gullberg GT, Greenberg WL, Budinger TF. Donner algorithms for reconstruction tomography. RECLBL library users manual, Publication 214. University of California: Lawrence Berkeley Laboratory; 1977.

  15. Keyes JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron – a scintillation camera transaxial tomography. J Nucl Med. 1977;18:381–7.

    PubMed  Google Scholar 

  16. Jaszczak RJ, Murphy PH, Huard D, Burdine JA. Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med. 1977;18:373–80.

    CAS  PubMed  Google Scholar 

  17. Larsson SA. Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl. 1980;363:1–75.

    CAS  PubMed  Google Scholar 

  18. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  CAS  PubMed  Google Scholar 

  19. Anger HO. Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN, editors. Fundamental problems in scanning. Springfield: Charles C Thomas; 1968.

    Google Scholar 

  20. Myers MJ, Keyes WI, Mallard JR. An analysis of tomographic scanning systems. Symposium on Medical Radioisotope Scintigraphy 1972, vol. 1. Vienna: International Atomic Energy Agency; 1973. p. 331–45.

  21. McAfee JG, Mozley JM, Stabler EP. Longitudinal tomographic radioisotope imaging with a scintillation camera: theoretical considerations of a new method. J Nucl Med. 1969;10:654–9.

    CAS  PubMed  Google Scholar 

  22. Walker WG. Tomographic radiation camera. US patent 3612865 1968–71.

  23. Freedman GS. Tomography with a gamma camera. J Nucl Med. 1970;11:602–4.

    CAS  PubMed  Google Scholar 

  24. Muellehner G. Tomographic imaging device using a rotating slanted multichannel collimator. US Patent 3684886 1970–2.

  25. Muellehner G. Tomographic imaging device. US Patent 3852603 1973–4

  26. Vogel RA, Kirch D, LeFree M, Steel PC. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med. 1978;19:648–54.

    CAS  PubMed  Google Scholar 

  27. Beekman FJ, van der Have F. The Pinhole: gateway to ultra-high resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34:151–61.

    Article  PubMed  Google Scholar 

  28. Barrett HH, DeMeester AD, Wilson DT, Farmelant MH. Tomographic imaging with a Fresnel zoneplate camera. In: Freedman GS, editor. Tomographic imaging in nuclear medicine. New York: Society of Nuclear Medicine; 1974.

    Google Scholar 

  29. Knoll GF, Williams JJ. Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci. 1979;245:581–6.

    Google Scholar 

  30. Knoll GF, Rogers WL, Koral KF, Stamos JA, Clinthorne NH. Application of coded apertures in tomographic head scanning. Nucl Instrum Methods. 1984;221:226–32.

    Article  CAS  Google Scholar 

  31. Brill AB, Patton JA, Erickson JJ, King PH. Multicrystal tomographic scanner for mapping thin cross sections of radioactivity in an organ of the human body. US patent 3591806 1970–1.

  32. Patton JA, Brill AB, Erickson JJ, Cook WE, Johnstone RE. A new approach to the mapping of three-dimensional radionuclide distributions. J Nucl Med. 1969;10:363.

    Google Scholar 

  33. Pickens DR, King PH, Patton JA, Brill AB. The design, construction and preliminary testing of a mutually orthogonal coincident focal point tomographic scanner. Proceedings of the 13th Annual Meeting of the Association for the Advancement of Medical Instrumentation, 1978, Washington DC. Arlington, VA: Association for the Advancement of Medical Instrumentation; 1978

  34. Stoddart HF, Stoddart HA. A new development in single gamma transaxial tomography: Union Carbide focused collimator scanner. IEEE Trans Nucl Sci. 1979;NS-26:2710–2.

    Article  Google Scholar 

  35. Jarritt PH, Ell PJ, Myers MJ, Brown JG, Deacon JM. A new transverse-section brain imager for single-gamma emitters. J Nucl Med. 1979;20:319–27.

    CAS  PubMed  Google Scholar 

  36. Moore SC, Doherty MD, Zimmerman RE, Holman BL. Improved performance from modifications to the multidetector SPECT brain scanner. J Nucl Med. 1984;25:688–91.

    CAS  PubMed  Google Scholar 

  37. Rogers WL, Clinthorne NH, Stamos J, Koral KF, et al. SPRINT: a stationary detector single photon ring tomography for brain imaging. IEEE Trans Med Imaging. 1982;1:63–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rogers WL, Clinthorne NH, Shao L, Chiao P, Ding Y, Stamos JA, et al. SPRINT II: a second generation single photon ring tomograph. IEEE Trans Med Imaging. 1988;7:291–7.

    Article  CAS  PubMed  Google Scholar 

  39. Metzler SD, Accorsi R, Novak JR, Aya NAS, Jaszczak RJ. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47:1884–90.

    PubMed  Google Scholar 

  40. Mahmood ST, Erlandsson K, Cullum I, Hutton BF. Design of a novel slit-slat collimator system for SPECT imaging of the human brain. Phys Med Biol. 2009;54:3433–49.

    Article  CAS  PubMed  Google Scholar 

  41. Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomography (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr. 1980;4:230–40.

    Article  CAS  PubMed  Google Scholar 

  42. Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci. 1988;35:654–8.

    Article  CAS  Google Scholar 

  43. Kanno I, Uemura K, Shuichi M, Yuko M. Headtome: a hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomogr. 1981;5:216–26.

    Article  CAS  PubMed  Google Scholar 

  44. Kimura K, Hashikawa K, Etani H, Uehara A, Kozuka T, Moriwaki H, et al. A new apparatus for brain imaging: four-head rotating gamma camera single photon emission computed tomography. J Nucl Med. 1990;31:603–9.

    CAS  PubMed  Google Scholar 

  45. Klein WP, Barrett HH, Pang IW, Patton DD. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. Nuclear Science Symposium Medical Imaging Conference Record, 1995. IEEE. vol. 2, p. 931–2.

  46. Brzymialhiewicz CN, Tornai MP, McKinley RL, Bowsher JE. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector. IEEE Trans Med Imaging. 2005;24:868–77.

    Article  Google Scholar 

  47. Madsen M. Recent advances in SPECT imaging. J Nucl Med. 2007;48:661–73.

    Article  PubMed  Google Scholar 

  48. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.

    Article  PubMed  Google Scholar 

  49. Patton JA, Slomka PJ, Germano G, Berman DS. Recent technological advances in nuclear cardiology. J Nucl Cardiol. 2007;14:555–65.

    Article  Google Scholar 

  50. Hutton BF. Developments in cardiac-specific SPECT imaging. Q J Nucl Med. 2012;56:221–9.

    CAS  Google Scholar 

  51. Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R 2nd, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chang W, Ordonez CE, Liang H, Li Y, Liu J. C-SPECT – a clinical cardiac SPECT/TCT platform: design concepts and performance potential. IEEE Trans Nucl Sci. 2009;56:2659–71.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wagenaar DJ. CdTe and CdZnTe semiconductor detectors for nuclear medicine imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 269–91.

    Chapter  Google Scholar 

  54. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Funk T, Kirch DL, Koss JE, Botvinick E, Hasagawa B. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med. 2006;47:596–602.

    Google Scholar 

  57. Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–43.

    Article  PubMed  Google Scholar 

  58. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Evaluation of the performance characteristics of D-SPECT: a novel SPECT system designed for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.

    Article  PubMed  Google Scholar 

  59. Barrett HH, Furenlid LR, Freed M, Hesterman JY, Kupinski MA, Clarkson E, et al. Adaptive SPECT. IEEE Trans Med Imaging. 2008;27:775–88.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Freed M, Kupinski MA, Furenlid LR, Barrett HH. A prototype instrument for adaptive SPECT imaging. Proc SPIE. 2007;6510. doi:10.1117/12.708818.

  61. Moore JW, Furenlid LR, Barrett HH. Instrumentation design for adaptive SPECT/CT. Nuclear Science Symposium Medical Imaging Conference Record, 2008. IEEE. p. 5585–5587.

  62. Pichler BJ, Ziegler SI. Photodetectors. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 255–67.

    Chapter  Google Scholar 

  63. Shah KS, Farrell R, Grazioso R, Harmon ES, Karplus E. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci. 2002;49:1687–92.

    Article  CAS  Google Scholar 

  64. Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Meth A. 2006;563:368–76.

    Article  CAS  Google Scholar 

  65. Schaart DR, van Dam HT, Deifert S, Vinke R, Dendooven P, Löhner H, et al. A novel SiPM-array-based monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.

    Article  CAS  PubMed  Google Scholar 

  66. Fiorini C, Longoni A, Perotti F. New detectors for gamma-ray spectroscopy and imaging, based on scintillators coupled to silicon drift detectors. Nucl Instrum Meth A. 2000;604:101–3.

    Article  CAS  Google Scholar 

  67. Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Meth A. 2003;512:265–71.

    Article  CAS  Google Scholar 

  68. Tan LJ, Cai L, Meng LJ. A prototype of the MR-compatible ultra-high resolution SPECT for in vivo mice brain imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 2800–5.

  69. Hamamura MJ, Ha S, Roeck WW, Muffuler LT, Wagenaar DJ, Meier D, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.

    Article  PubMed  Google Scholar 

  70. Fiorini C, Busca P, Peloso R, Abba A, Geraci A, Bianchi C, et al. The HICAM gamma camera. IEEE Trans Nucl Sci. 2012;59:537–44.

    Article  CAS  Google Scholar 

  71. Busca P, Fiorini C, Butt AD, Occhipinti M, Peloso R, Quaglia R, et al. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging. Nucl Instrum Meth Phys Res A. 2013. doi:10.1016/j.nima.2013.08.064.

  72. Beekman FJ, de Vre GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol. 2005;50:N109–19.

    Article  PubMed  Google Scholar 

  73. Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci. 2006;53:54–8.

    Article  CAS  Google Scholar 

  74. Miller BW, Barber HB, Barrett HH, Shestakova I, Singh B, Nagarkar VV. Single-photon spatial and energy resolution enhancement of a columnar CsI(Tl)/EMCCD gamma-camera using maximum-likelihood estimation. Proc SPIE. 2006;6142. doi:10.1117/12.652650

  75. Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT imaging: simulation results. IEEE Trans Nucl Sci. 1993;40:1123–9.

    Article  CAS  Google Scholar 

  76. Goorden MC, Rentmeester MC, Beekman FJ. Theoretical analysis of full-ring multi-pinhole brain SPECT. Phys Med Biol. 2009;54:6593–610.

    Article  CAS  PubMed  Google Scholar 

  77. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.

    Article  Google Scholar 

  78. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabelled molecules in mice. J Nucl Med. 2005;46:1194–200.

    PubMed  Google Scholar 

  79. Todd RW, Nightingale JM, Everett DB. A proposed gamma-camera. Nature. 1974;25:132–4.

    Article  Google Scholar 

  80. Singh M. An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys. 1983;10:421–7.

    Article  CAS  PubMed  Google Scholar 

  81. Singh M, Doria D. An electronically collimated gamma camera for single photon emission computed tomography. Part II: image reconstruction and preliminary experimental measurements. Med Phys. 1983;10:428–35.

    Article  CAS  PubMed  Google Scholar 

  82. LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1998;45:943–9.

    Article  CAS  Google Scholar 

  83. Rogers WL, Clinthorne NH, Bolozdyna A. Compton cameras for nuclear medical imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 383–419.

    Chapter  Google Scholar 

  84. Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, et al. Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl Instrum Meth A. 2007;580:1031–5.

    Article  CAS  Google Scholar 

  85. Orito R, Kubo H, Miuchi K, Nagayoshi T, Takada A, Takeda A, et al. Compton gamma-ray imaging detector with electron tracking. Nucl Instrum Meth A. 2004;525:107–13.

    Article  CAS  Google Scholar 

  86. Harkness LJ, Boston AJ, Boston HC, Cresswell JR, Grint AN, Lazarus I, et al. Design considerations of a Compton camera for low energy medical imaging. AIP Conf Proc. 2009;1194:90–5.

    Article  Google Scholar 

  87. Peterson TE, Furenlid LR. SPECT detectors: the Anger camera and beyond. Phys Med Biol. 2011;56:R145–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Moses WW, Shah KS. Potential for RbGd2Br7:Ce, LaBr3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging. Nucl Instrum Meth A. 2005;537:317–20.

    Article  CAS  Google Scholar 

  89. Rajaram R, Bhattacharya M, Xinhong D, Malmin R, Rempel TD, Vija AH, Zeintl J. Tomographic performance characteristics of the IQ SPECT system. Nuclear Science Symposium Medical Imaging Conference Record, 2011. IEEE. p. 2451–6.

  90. Keyes WI. The fan-beam gamma camera. Phys Med Biol. 1975;20:489–93.

    Article  CAS  PubMed  Google Scholar 

  91. Gindi GR, Arendt K, Barrett HH, Chiu MY, Ervin A, Giles CL, et al. Imaging with rotating slit apertures and rotating collimators. Med Phys. 1982;9:324–39.

    Article  CAS  PubMed  Google Scholar 

  92. Lodge MA, Webb S, Flower MA, Binnie DM. A prototype rotating slat collimator for single photon emission computed tomography. IEEE Trans Med Imaging. 1996;15:500–11.

    Article  CAS  PubMed  Google Scholar 

  93. Chang W, Lin SL, Henkin RE. A new collimator for cardiac tomography: the quadrant slat-hole collimator. J Nucl Med. 1982;23:830–5.

    CAS  PubMed  Google Scholar 

  94. Bal G, DiBella EVR, Gullberg GT, Zeng GL. Cardiac imaging using a four-segment slant-hole collimator. IEEE Trans Nucl Sci. 2006;53:2619–27.

    Article  Google Scholar 

  95. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25:774–87.

    Article  CAS  PubMed  Google Scholar 

  96. Macey D, Marshall R. Absolute quantification of radiotracer uptake in lungs using a gamma camera. J Nucl Med. 1984;23:731–35.

    Google Scholar 

  97. Malko JA, van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med. 1986;27:701–5.

    CAS  PubMed  Google Scholar 

  98. Greer KL, Harris CC, Jaszczak RJ, Colemen RE, Hedland LW, Floyd CE, et al. Transmission computed tomography data acquisition with a SPECT system. J Nucl Med Tech. 1987;15:53–6.

    Google Scholar 

  99. Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med. 1989;30:497–507.

    CAS  PubMed  Google Scholar 

  100. Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction methods using the information of attenuation distribution for single photon emission CT. Med Imaging Tech. 1984;2:20–8.

    Google Scholar 

  101. Bailey B, Hutton B, Walker P. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med. 1987;28:844–51.

    CAS  PubMed  Google Scholar 

  102. Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med. 1998;39:2183–9.

    CAS  PubMed  Google Scholar 

  103. Gagnon D. Beacon-STM: non-uniform attenuation correction for SPECT imaging. Nucl Med Rev. 1999;2:87–92.

    Google Scholar 

  104. Zeng GL, Gullberg GT, Christian PE, Gagnon D, Tung C-H. Asymmetric cone-beam transmission tomography. IEEE Trans Nucl Sci. 2001;48:117–24.

    Article  Google Scholar 

  105. Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci. 1992;39:1134–43.

    Article  CAS  Google Scholar 

  106. Gullberg GT, Morgan HT, Zeng GL, Christian PE, Di Bella EVR, Tung C-H, et al. The design and performance of a simultaneous transmission and emission tomography system. IEEE Trans Nucl Sci. 1998;45:1676–98.

    Article  CAS  Google Scholar 

  107. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med. 1993;34:1752–60.

    CAS  PubMed  Google Scholar 

  108. Beekman FJ, Kamphuis C, Hutton BF, van Rijk PP. Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med. 1996;39:1996–2003.

    Google Scholar 

  109. Hendel RC, Corbett JR, Cullom SJ, Depuey EG, Garcia EV, Batemen TM. The value and practice of attenuation correction for myocardial perfusion SPECT Imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med. 2002;43:273–80.

    Google Scholar 

  110. O’Connor MK, Kemp B. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol. 2002;9:361–76.

    Article  PubMed  Google Scholar 

  111. Hasegawa BH, Gingold EL, Reilly SM, Liew SC, Cann CE. Description of a simultaneous emission-transmission CT system. Proc SPIE. 1990;1231:50–60.

    Article  Google Scholar 

  112. Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.

    CAS  PubMed  Google Scholar 

  113. Blankespoor SC, Xu K, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43:2263–74.

    Article  Google Scholar 

  114. Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med. 2000;41:1364–8.

    CAS  PubMed  Google Scholar 

  115. Hamann M, Aldridge M, Dickson J, Endozo R, Lozhkin K, Hutton BF. Evaluation of a low-dose/slow-rotating SPECT-CT system. Phys Med Biol. 2008;53:2495–508.

    Article  CAS  PubMed  Google Scholar 

  116. Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging. 2007;34:1415–26.

    Article  PubMed  Google Scholar 

  117. Beekman FJ, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging. 2007;34:1410–4.

    Article  PubMed  Google Scholar 

  118. Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography. Proc SPIE. 2006;6319. doi:10.1117/12.683765

  119. Kindem J, Bai C, Conwell R. CsI(Tl)/PIN solid state detectors for combined high resolution SPECT and CT imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2010. IEEE. p. 1987–90.

  120. Sowards-Emmerd D, Balakrishnan K, Wiener J, Shao L, Ye J. CBCT-subsystem performance of the multi-modality Brightview XCT system. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 3053–8.

  121. Nuyts J, Dupont P, Stroobants S, Bennick R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sonograms. IEEE Trans Med Imaging. 1999;18:393–403.

    Article  CAS  PubMed  Google Scholar 

  122. Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506

    Article  PubMed  Google Scholar 

  123. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. 2008;53:R1–39.

    Article  CAS  PubMed  Google Scholar 

  124. Patton JA, Townsend DW, Hutton BF. Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med. 2009;39:247–63.

    Article  PubMed  Google Scholar 

  125. Hounsfield GN. Computerised transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  PubMed  Google Scholar 

  126. Ambrose J. Computerised transverse axial scanning (tomography). 2. Clinical application. Br J Radiol. 1973;46:1023–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and omissions

In an overview of this type it is difficult to ensure that facts are correct and that the many people who contributed to the development are appropriately recognized. I therefore offer apologies for any omissions or errors in this article. Thanks to Angela da Silva for details on the Philips Brightview system. Thanks also to Carlo Fiorini and Paulo Busca at POLIMI, Milan, for discussion and diagrams on solid-state readout systems. UCL and UCLH are supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Conflicts of interest

The author has no conflicts of interest. The Institute of Nuclear Medicine at UCL receives research support from GE Healthcare, Siemens Healthcare and Spectrum Dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Hutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutton, B.F. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging 41 (Suppl 1), 3–16 (2014). https://doi.org/10.1007/s00259-013-2606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2606-5

Keywords

Navigation