Skip to main content

Barley Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

The importance of barley stemmed mainly from the diversified use of its grain and the plant pertaining to food, feed and forage. In many countries around the world, this crop is often considered the only possible rain-fed cereal crop under low input and stressful environments, such as drought, heat and cold. Therefore, this old crop is likely to have new future in current situations of climate change and ever-increasing population pressure on food supply. During the early 1920s, the barley improvement program was started in India using pure line selection method. Most of the developed barley varieties are of six-row types and are primarily used for feed purpose, while two-row malt-purpose barley varieties are of recent origin. Globally, barley improvement programmes now see a great potential as industrial crop, and barley breeding activities were directed to develop malt-type barley varieties. Besides conventional breeding, the development in the fields of barley genomics is rapid, and researchers are having more choice to identify, characterize, clone, annotate and edit the genes of interests for the development of better varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeledo LG, Calderini DF, Slafer GA (2003) Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998). Euphytica 130:325–334

    CAS  Google Scholar 

  • Abou-Elwafa SF, Amein KA (2016) Genetic diversity and potential high temperature tolerance in barley (Hordeum vulgare). World J Agric Res 4:1–8

    Google Scholar 

  • Adhikari A, Steffenson BJJ, Smith KPP et al (2020) Identification of 524 quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. Theor Appl Genet 133:1019–1037

    CAS  PubMed  Google Scholar 

  • Ahokas H (1980) Cytoplasmic male sterility in barley. VII. Nuclear genes for restoration. Theor Appl Genet 57:193–202

    CAS  PubMed  Google Scholar 

  • Anglade P (1978) Plant breeding for resistance to insect pests: considerations about the use of induced mutations. IAEA, Vienna, p 123

    Google Scholar 

  • Arendt EK, Zannini E (2013) Cereal grains for the food and beverage industries. Woodhead Publishing, Cambridge, p 485

    Google Scholar 

  • Arru L, Francia E, Pecchioni N (2003) Isolate-specific QTLs of resistance to leaf stripe (Pyrenophoragraminea) in the Steptoe × Morex spring barley cross. Theor Appl Genet 106:668–675

    CAS  PubMed  Google Scholar 

  • Austin RR (1978) Actual and potential yields of wheat and barley in the United Kingdom. ADAS Q Rev 2:76–87

    Google Scholar 

  • Azhaguvel P, Komatsuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R, Rabey H et al (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    CAS  PubMed  Google Scholar 

  • Baik BK, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48(2):233–242

    CAS  Google Scholar 

  • Baumer M, Zimmermann G, Doleschel P (2000) Pflanzenzuechtung—Sicherung der RohstoffqualitaetfuerBrot und Bier imneuenJahrhundert. In: 100 Jahre ForschungfürLandwirte und Verbraucher. BayerischeLandesanstaltfuerBodenkultur und Pflanzenbau (LBP), Freising, pp 79–90

    Google Scholar 

  • Birthal PS, Jha AK (2005) Economic losses due to various constraints in dairy production in India. Indian J Anim Sci 75:1476–1480

    Google Scholar 

  • Blake T, Blake V, Bowman J, Abdel-Haleem H (2011) Barley: production, improvement and Uses. In: Ullrich SE (ed) Barley: production, improvement and uses. Wiley, Hoboken, pp 522–531

    Google Scholar 

  • Bockelman HE, Valkoun J (2011) Barley germplasm conservation and resources. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiely- Blackwell Publishing Ltd., Chichester, pp 144–159

    Google Scholar 

  • Bonman JM, Gu Y, Coleman-Derr D et al (2011) Inferring geographic origin of barley (Hordeum vulgare L. subsp. vulgare) accessions using molecular markers. Genet Resour Crop Evol 58:291–298

    Google Scholar 

  • Bothmer R, Komatsuda T (2011) Barley original and related species. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Hoboken, pp 14–62

    Google Scholar 

  • Boukerrou L, Rasmusson DD (1990) Breeding for high biomass yield in spring barley. Crop Sci 30:31–35

    Google Scholar 

  • Bregitzer P, Mornhinweg D, Hammon R et al (2005) Registration of ‘Burton’ barley. Crop Sci 45:1166–1168. https://doi.org/10.2135/cropsci2004.0461CV

    Article  Google Scholar 

  • Brown AHD, Munday J (1982) Population-genetic structure and optimal sampling of landraces of barley from Iran. Genetica 58:85–96

    Google Scholar 

  • Bulman P, Mather DE, Smith DL (1993) Genetic improvement of spring barley cultivars grown in eastern Canada from 1910 to 1988. Euphytica 71:35–48

    Google Scholar 

  • Carroll TW, Gossel PL, Hockett EA (1979) Inheritance of resistance to seed transmission of barley stripe mosaic virus in barley. Phytopathology 69:431–433

    Google Scholar 

  • Casey-Common J, Klinck HR (1981) Sequence and synchrony of culm development: implications in breeding for limited tillering barleys. In: Asher M (ed) Barley genet. IV. proc. 4th int. barley genet. symp. Edinburgh Univ. Press, Edinburgh, pp 533–536

    Google Scholar 

  • Ceccarelli S, Grando S, Capettini F et al (2008) Barley breeding for sustainableproduction. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Iowa, pp 193–225

    Google Scholar 

  • Cistue L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tissue Organ Cult 55:159–166

    Google Scholar 

  • Clapham D (1973) Haploid induction in cereals. Z Pflazenzuchtg 69:142–145

    Google Scholar 

  • Clark HH (1967) The origin and early history of the cultivated barleys. Agric Hist Rev 15:1–18

    Google Scholar 

  • Cossani CM, Slafer GA, Savin R (2009) Yield and biomass in wheat and barley under a range of conditions in a Mediterranean site. Field Crop Res 112(2–3):205–213

    Google Scholar 

  • Cu ST, March TJ, Stewart S et al (2016) Genetic analysis of grain and malt quality in an elite barley population. Mol Breed 36(9):129. https://doi.org/10.1007/s11032-016-0554-z

    Article  CAS  Google Scholar 

  • Dai F, Chen ZH, Wang X et al (2014) Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc Natl Acad Sci U S A 111:13403–13408. https://doi.org/10.1073/pnas.1414335111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson IK, Russell J, Powell W et al (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–931

    PubMed  Google Scholar 

  • Dawson AM, Ferguson JN, Gardiner M et al (2016) Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor Appl Genet 129(4):831–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ditsch DC, Bitzer MJ (2005) Managing small grains for livestock forage. University of Kentucky, Cooperative Extension Service, College of Agriculture, AGR-160

    Google Scholar 

  • Donald CM (1968) The design of a wheat ideotype. In: Finlay KW, Shepherd KW (eds) Proc. 3rd Int. wheat genetics symp. Australian Academy of Science, Canberra, pp 377–387

    Google Scholar 

  • Dracatos PM, Khatkar MS, Singh D et al (2014) Genetic mapping of a new race specific resistance allele effective to Puccinia hordei at the Rph9/Rph12 locus on chromosome 5HL in barley. BMC Plant Biol 14(1):1598

    PubMed  PubMed Central  Google Scholar 

  • Dreiseitl A (2020) A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci Rep 10:18930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drikvand R, Samiei K, Hossinpor T (2011) Path coefficient analysis in hull-less barley under rainfed condition. Aust J Basic Appl Sci 5:277–279

    Google Scholar 

  • Dziurdziak J, Paulina B, Sylwia W et al (2020) Multifaceted analysis of barley landraces collected during gene bank expeditions in Poland at the end of the 20th century. Agronomy 2020:10

    Google Scholar 

  • FAO (2016) The state of food and agriculture. http://www.fao.org/3/i6030e/i6030e.pdf

  • FAO (2020) World food and agriculture – statistical yearbook 2020. Rome. https://doi.org/10.4060/cb1329en

  • Fejer SO, Fedak G (1975) Genetic variances and correlations between yield components and other traits in crosses between spring and winter barley. Z Pflanzenzuecht 74:137–142

    Google Scholar 

  • Feng L, Perschke YML, Fontaine D et al (2019) Co-ensiling of cover crops and barley straw for biogas production. Renew Energy 142:677–683. https://doi.org/10.1016/j.renene.2019.04.138

    Article  CAS  Google Scholar 

  • Fischbeck G, Schwarzback E, Sobel Z et al (1976) Types of protection against powdery mildew in Germany and Israel selected from Hordeum spontaneum. In: Gaul H (ed) Barley genetics III. proc. 3rd int. barley genet. symp. Verlag Karl Thiemig, Munich, pp 412–417

    Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U et al (2007) The barley phytomer. Ann Bot 100(4):725–733

    PubMed  PubMed Central  Google Scholar 

  • Foster JP (1984) SD 84811-a chemical hybridizing agent for small grains. Agron Abstr 1984:66

    Google Scholar 

  • Foster CA, Fothergill M (1981) Breeding hybrid barley. In: Asher M (ed) Barley genet. IV. proc. 4th int. barley genet. symp. Edinburgh Univ. Press, Edinburgh, pp 776–771

    Google Scholar 

  • Francia E, Morcia C, Pasquariello M et al (2016) Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol 92:161–175. https://doi.org/10.1007/s11103-016-0505-4

    Article  CAS  PubMed  Google Scholar 

  • Friedt W, Horsley RD, Harvey BL et al (2011) Barley breeding history, progress, objectives, and technology. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Hoboken, pp 160–220

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Garcia FSA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Google Scholar 

  • Garstang JR, Spink JH, Suleimenov M et al (2011) Cultural practices: focus on major barley-producing regions. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiely- Blackwell Publishing Ltd., Chichester, pp 221–281

    Google Scholar 

  • Gerland P, Raftery AE, Evikova H et al (2014) World population stabilization unlikely this century. Science 346(6206):234–237. https://doi.org/10.1126/science.1257469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  PubMed  Google Scholar 

  • Goulden CH (1939) Problems in plant selection. In: Proceedings of the seventh international genetics congress. Cambridge University Press, pp 132–133

    Google Scholar 

  • Gous PW, Hickey L, Christopher JT et al (2016) Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica 207:305–317. https://doi.org/10.1007/s10681-015-1542-9

    Article  CAS  Google Scholar 

  • Grafius JE (1965) A geometry of plant breeding. Michigan State Univ Agric Stn Res Bull No 7

    Google Scholar 

  • Graner A, Streng S, Drescher A et al (2000) Molecular mapping of the leaf rust resistance gene <em>Rph7</em> in barley. Plant Breed 119(5):389–392. https://doi.org/10.1046/j.1439-0523.2000.00528.x

    Article  CAS  Google Scholar 

  • Greveniotis V, Zotis S, Sioki E, Ipsilandis CG (2019) Improving pedigree selection in applied breeding of barley populations. Cereal Res Commun 47(1):123–133. https://doi.org/10.1556/0806.46.2018.068

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:4972

    Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Google Scholar 

  • Gyawali S, Amezrou R, Verma RPS et al (2018) Seedling and adult stage resistance to spot form of net blotch (SFNB) in spring barley and stability of adult stage resistance to SFNB in Morocco. Eur J Plant Pathol. https://doi.org/10.1007/s10658-018-1575-8

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Google Scholar 

  • Hamilton DG (1953) The approach method of barley hybridization. Can J Agric Sci 33:98–100

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Harlan HV, Pope MN (1921) Ash content of awn, rachis, palea, and kernel of barley during growth and maturation. J Agric Res 22:433–499

    CAS  Google Scholar 

  • Harlan JR, De Wet J, Price EG (1973) Comparative evolution of cereals. Evolution 27:11–325. https://doi.org/10.1111/j.1558-5646.1973.tb00676.x

    Article  Google Scholar 

  • Hernandez J, Meints B, Hayes P (2020) Introgression breeding in barley: perspectives and case studies. Front Plant Sci 11:761. https://doi.org/10.3389/fpls.2020.00761

    Article  PubMed  PubMed Central  Google Scholar 

  • Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35(6):1019–1025. https://doi.org/10.1139/g92-156

    Article  CAS  Google Scholar 

  • Hill CC, Cartwright WB, Wiebe GA (1952) Barley varieties resistant to the hessian fly. Agron J 44(1):4–5

    Google Scholar 

  • Hirota N, Kaneko T, Ito K et al (2008) Diversity and geographical distribution of seed lipoxygenase-1 thermostability types in barley. Plant Breed 127:465–469. https://doi.org/10.1111/j.1439-0523.2008.01508.x

    Article  Google Scholar 

  • Hockett EA, Eslick RF (1968) Genetic male sterility in barley. I. Nonallelic genes. Crop Sci 8:218–220

    Google Scholar 

  • Hoekstra S, van Bergen S, van Brouwershaven IR et al (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218

    CAS  Google Scholar 

  • Hofmann K, Silvar C, Casas AM et al (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126(12):3091–3102

    CAS  PubMed  Google Scholar 

  • Humbroich K, Jaiser H, Schiemann A et al (2010) Mapping of resistance against barley mild mosaic virus-Teik (BaMMV)–an rym5 resistance breaking strain of BaMMV–in the Taiwanese barley (Hordeum vulgare) cultivar ‘Taihoku A’. Plant Breed 129(3):346–348

    CAS  Google Scholar 

  • Ingvordsen CH, Backers G, Lyngkjaer MF et al (2015) Significant decrease in yield under future climate conditions: stability and production of 138 spring barley accessions. Eorop J Agron 63:105–113

    Google Scholar 

  • Ivandic V, Walther U, Graner A (1998) Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theor Appl Genet 97:1235–1239

    CAS  Google Scholar 

  • Jabbari M, Siahsar BA, Ramroodi M et al (2010) Correlation and path analysis of morphological traits associated with grain yield in drought stress and non-stress conditions in barley agronomy. J Pajouhesh Sazandegi 93:112–119

    Google Scholar 

  • Jedel PE, Helm JH (1994) Assessment of Western Canadian barleys of historical interest: I. Yield and agronomic traits. Crop Sci 34:922–927

    Google Scholar 

  • Johnston PA, Niks RE, Meiyalaghan V et al (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126(6):1613–1625

    PubMed  Google Scholar 

  • Jørgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152. https://doi.org/10.1007/BF00023919

    Article  Google Scholar 

  • Jost M, Singh D, Lagudah E et al (2020) Fine mapping of leaf rust resistance gene Rph13 from wild barley. Theor Appl Genet 133:1–9

    Google Scholar 

  • Kai H, Takata K, Tsukazaki M et al (2012) Molecular mapping of Rym17, a dominant and rym18 a recessive barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124(3):577–583

    CAS  PubMed  Google Scholar 

  • Kant L, Amrapali S, Babu BK (2016) Barley. In: Genetic and genomic resources for grain cereals improvement. Academic, Cambridge, pp 125–157

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    CAS  PubMed  Google Scholar 

  • Khodayari H, Saeidi H, Roofigar AA et al (2012) Genetic diversity of cultivated barley landraces in Iran measured using microsatellites. Int J Biosci Biochem Bioinf 2:287–290

    Google Scholar 

  • Kilian A, Steffenson BJ, SaghaiMaroof MA et al (1994) RFLP markers linked to the durable stem rust resistance gene Rpg1 in barley. Mol Plant Microbe Interact 7(2):298–301

    CAS  PubMed  Google Scholar 

  • Kilian A, Chen J, Han F et al (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. In: Oryza: from molecule to plant. Springer, New York, pp 187–195

    Google Scholar 

  • Kling JG, Hayes PM (2004) Barley genetics and breeding. In: Wrigley C, Corke H, Walker H (eds) Encyclopedia of grain science. Wiley, Hoboken, pp 27–37

    Google Scholar 

  • Klinner WE, Biggar GW (1972) Some effect of harvest date and design of cutting table on combine front-end losses. J Agric Eng Res 17:71–78

    Google Scholar 

  • König J, Kopahnke D, Steffenson BJ et al (2012) Genetic mapping of a leaf rust resistance gene in the former Yugoslavian barley landrace MBR1012. Mol Breed 30(3):1253–1264

    Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B et al (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    CAS  Google Scholar 

  • Kumar P, Tikle AN, Verma RPS et al (2017) Diversity assessment of hulled barley (Hordeum vulgare L.) accessions by agro-morphological traits and SSR markers. Res J Biotechnol 12(11):21–28

    Google Scholar 

  • Lalic A, Josip K, Novoselović D et al (2003) Comparison of pedigree and single seed descent method (SSD) in early generation of barley. Poljoprivreda 9:33

    Google Scholar 

  • Laskowski W, Górska-Warsewicz H, Rejman K et al (2019) How important are cereals and cereal products in the average polish diet? Nutrients 11(3):679. https://doi.org/10.3390/nu11030679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman LC (1981) Where is hybrid barley today? In: Asher M (ed) Barley genet. IV. Proc. 4th Int. Barley Genet. Symp., Edinburgh, Scotland. 22–29 July 1981. Edinburgh Univ. Press, Edinburgh, pp 772–777

    Google Scholar 

  • Leng Y, Zhao M, Wang R et al (2018) The gene conferring susceptibility to spot blotch caused by Cochliobolus sativus is located at the Mla locus in barley cultivar Bowman. Theor Appl Genet 131(7):531–1539

    Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Lillemo M, Reitan L, Bjornstad A (2010) Increasing impact of plant breeding on barley yields in Central Norway from 1946 to 2008. Plant Breed 129:484–490

    Google Scholar 

  • Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22–252

    Google Scholar 

  • Mackay I, Horwell A, Garner J et al (2011) Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–223

    CAS  PubMed  Google Scholar 

  • Macleod LC (2000) Breeding barley for malt and beer. In: Proceedings of 8th barley genetic symposium, pp 81–86

    Google Scholar 

  • Mammadov JA, Brooks WS, Griffey CA et al (2007) Validating molecular markers for barley leaf rust resistance genes Rph5 and Rph7. Plant Breed 126(5):458–463

    CAS  Google Scholar 

  • Martintello P, Delocu G, Boggini G et al (1987) Breeding progress in grain yield and selected agronomic characters of winter barley (Hordeum vulgare L.) over the last quarter of a century. Plant Breed 99:289–294

    Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433. https://doi.org/10.1038/nature22043

    Article  CAS  PubMed  Google Scholar 

  • McNeilly T (1982) A rapid method for screening barley for aluminum tolerance. Euphytica 31:237–239

    CAS  Google Scholar 

  • Mehra KL (2007) Agricultural foundation of Indus–Saraswati civilization. In: Nene YL (ed) Glimpses of the agricultural heritage of India. Asian Agri-History Foundation, Secunderabad, India, pp 11–26

    Google Scholar 

  • Mohammadi M, Blake TK, Budde AD et al (2015) A genome-wide association study of malting quality across eight US barley breeding programs. Theor Appl Genet 128:705–721. https://doi.org/10.1007/s00122-015-2465-5

    Article  CAS  PubMed  Google Scholar 

  • Mornhinweg DW (2011) Biotic stress in barley: insect problems and solutions. In: Barley: production, improvement, and uses. Springer, New York, pp 355–390

    Google Scholar 

  • Moseman JG, Smith DH Jr (1985) Germplasm resources. In: Rasmusson DC (ed) Barley. American Society of Agronomy, Crop Science Society of America, Soil Science of America, Madison, WI, pp 57–72

    Google Scholar 

  • Moseman JG, Baenziger PS, Kilpatrick RA (1981) Genes conditioning resistance of Hordeum spontaneum to Erysiphe graminis. Crop Sci 21:229–232

    Google Scholar 

  • Moustafa ESA, El-Sobky ESEA, Farag HIA et al (2021) Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agronomy 11:717. https://doi.org/10.3390/agronomy11040717

    Article  CAS  Google Scholar 

  • Munoz P, Voltas J, Araus JL et al (1998) Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breed 117:531–535

    Google Scholar 

  • Munoz-Amatriain M, Cuesta-Marcos A, Endelman JB et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS One 9(4):e94688. https://doi.org/10.1371/journal.pone.0094688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwando E, Han Y, Angessa TT et al (2020) Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front Plant Sci 11:118. https://doi.org/10.3389/fpls.2020.00118

    Article  PubMed  PubMed Central  Google Scholar 

  • Nene YL (2012) Rigveda has references to rice? Asian Agri Hist 16(4):403–409

    Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources of wild barley, Hordeum spontaneum, in the fertile crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 19–43

    Google Scholar 

  • Newman RK, Newman CW (2008) Barley for food and health: science, technology, and products. John Wiley & Sons, Inc, Hoboken, NJ

    Google Scholar 

  • Nguyen VL, Ribot SA, Dolstra O et al (2013) Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum vulgare L.). Mol Breed 31:137–152. https://doi.org/10.1007/s11032-012-9777-9

    Article  CAS  Google Scholar 

  • Nielsen JP, Munck L (2003) Evaluation of malting barley quality using exploratory data analysis. I. Extraction of information from micro-malting data of spring and winter barley. J Cereal Sci 38:173–180

    CAS  Google Scholar 

  • OECD (2004) Organization for Economic Cooperation and Development. Consensus document on compositional considerations for new varieties of barley (Hordeum vulgare L.): key food and feed nutrients and anti-nutrients. Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. Series on the Safety of Novel Foods and Feeds, No. 12, ENV/JM/MONO. Environment Directorate, OECD, Paris. https://www.oecd.org/env/ehs/biotrack/46815246.pdf

  • Omarov DS (1973) Free wind pollination of winter barley. Skh Biol 8:374–377. Plant Breed Abstr 44:3160

    Google Scholar 

  • Ordon F, Bauer E, Friedt W et al (1995) Marker-based selection for the ym4BaMMV-resistance gene in barley using RAPDs. Agronomie 15:481–485

    Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE et al (2007) QTL analysis of malting quality traits in two barley populations. Aust J Agric Res 58:858–866. https://doi.org/10.1071/AR06203

    Article  CAS  Google Scholar 

  • Park RF, Poulsen D, Barr AR et al (2003) Mapping genes for resistance to Puccinia hordei in barley. Aust J Agric Res 54(12):1323–1333

    CAS  Google Scholar 

  • Perby H, Jensen P (1983) Varietal differences in uptake and utilization of nitrogen and other macro-elements in seedlings of barley, Hordeum vulgare. Physiol Plant 58:223–230

    CAS  Google Scholar 

  • Perovic D, Stein N, Zhang H et al (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4(2):74–83

    CAS  PubMed  Google Scholar 

  • Pickering RA (1982) The effect of pollination bag type on seed quality and size in Hordeum inter-and intraspecific hybridization. Euphytica 31:439–449

    Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109(1–3):344–349. https://doi.org/10.1159/000082418

    Article  CAS  PubMed  Google Scholar 

  • Piechota U, SÅ‚owacki P, Czembor PC (2020) Identification of a novel recessive gene for resistance to powdery mildew (Blumeria graminis f. sp. hordei) in barley (Hordeum vulgare). Plant Breed 139(4):730–742

    CAS  Google Scholar 

  • Pope MN (1939) Viability of pollen and ovules of barley after cold storage. J Agric Res 59(6):453–463

    Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. Climate change 2014: impacts, adaptation and vulnerability. In: Working group II contribution to the IPCC 5th assessment report, Geneva, Switzerland

    Google Scholar 

  • Purl YP, Qualset CO, Williams WA (1982) Evaluation of yield components as selection criteria in barley breeding. Crop Sci 22:927–931

    Google Scholar 

  • Qian L, Xing-Mei J, Zhu-Qing S (2021) Genome-wide analysis of NLR disease resistance genes in an updated reference genome of barley. Front Genet. https://doi.org/10.3389/fgene.2021.694682

  • Ray DK, Gerber JS, MacDonald GK et al (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989. https://doi.org/10.1038/ncomms6989

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Abbas G, Shahid M et al (2019) Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation. Ecotoxicol Environ Saf 171:146–153

    CAS  PubMed  Google Scholar 

  • Rehman S, Amouzoune M, Hiddar H et al (2020) Traitsdiscovery in Hordeum vulgaresbsp. spontaneum accessions and in lines derived from interspecific crosses with wild Hordeum species for enhancing barley breeding efforts. Crop Sci 6(1):1–15

    Google Scholar 

  • Reinert S, Kortz A, Léon J et al (2016) Genome-wide association mapping in the global diversity set reveals new QTL controlling root system and related shoot variation in barley. Front Plant Sci 7:1061

    PubMed  PubMed Central  Google Scholar 

  • Riaz A, Kanwal F, Börner A et al (2021) Advances in genomics-based breeding of barley: molecular tools and genomic databases. Agronomy 11:894. https://doi.org/10.3390/agronomy11050894

    Article  CAS  Google Scholar 

  • Riggst TJ, Hanson PR, Start ND et al (1981) Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J Agric Sci 97:599–610

    Google Scholar 

  • Rijk B, Van Itersum MK, Withagen J (2013) Genetic progress in Dutch crop yields. Field Crops Res 149:262–268

    Google Scholar 

  • Roberts-Oehlschlager S, Dunwell SM (1990) Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tissue Org Cult 20:235–240

    CAS  Google Scholar 

  • Rothwell CT, Singh D, Dracatos PM, Park RF (2020) Inheritance and characterization of Rph27: a third race-specific resistance gene in the barley cultivar Quinn. Phytopathology. https://doi.org/10.1094/PHYTO-12-19-0470-R

  • Ruzdik NM, Valcheva D, Vulchev D et al (2015) Correlation between grain yield and yield components in winter barley varieties. Agric Sci Technol. 7(1):40–441

    Google Scholar 

  • Saade S, Maurer A, Shahid M et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586. https://doi.org/10.1038/srep32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saade S, Negrão S, Plett D et al (2018) In: Stein N, Muehlbauer GJ (eds) The barley genome. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-92528-8

    Chapter  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A et al (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Sandhu KS, Forrest KL, Kong S et al (2012) Inheritance and molecular mapping of a gene conferring seedling resistance against Puccinia hordei in the barley cultivar Ricardo. Theor Appl Genet 125(7):1403–1411

    CAS  PubMed  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    PubMed  Google Scholar 

  • Schmidt M, Kollers S, Maasberg-Prelle A et al (2016) Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet 129:203–213

    CAS  PubMed  Google Scholar 

  • Schooler AB (1967) A form of male sterility in barley hybrids. J Hered 58:206–211

    Google Scholar 

  • Shabrangy A, Ghatak A, Zhang S et al (2021) Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Front Plant Sci 12:622795

    PubMed  PubMed Central  Google Scholar 

  • Sharp EL (1985) Breeding for pest resistance. In: Rasmusson DC (ed) Barley, Agronomy Monograph No. 26. American Society for Agronomy, Madison, Wisconsin, USA, pp 313–333

    Google Scholar 

  • Singh KM, Singh RKP, Jha AK et al (2013) A micro analysis of fodder production and marketing in India: the case of Bihar. Munich Personal RePEc Archive. Online at https://mpra.ub.uni-muenchen.de/53548/

    Google Scholar 

  • Singh D, Dracatos P, Derevnina L et al (2015) Rph23: a new designated additive adult plant resistance gene to leaf rust in barley on chromosome 7H. Plant Breed 134(1):62–69

    CAS  Google Scholar 

  • Singh S, Singh SP, Singh A et al (2021) Application of double haploid in vegetable improvement. Agriblossom 1:1–7

    Google Scholar 

  • Soldanova M, IÅ¡tvánek J, Řepková J et al (2013) Newly discovered genes for resistance to powdery mildew in the subtelomeric region of the short arm of barley chromosome 7H. Czech J Genet Plant Breed 49(3):95–102

    Google Scholar 

  • Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167. https://doi.org/10.1007/BF00023920

    Article  Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    CAS  PubMed  Google Scholar 

  • Tacconi G, Cattivelli L, Faccini N et al (2001) Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet 102(8):1286–1291

    CAS  Google Scholar 

  • Thabet SG et al (2020) Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Genes (Basel) 11(5):533

    CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong L, Yoshida T (2008) Can hot-water emasculation be applied to artificial hybridization of indica-type cambodian rice? Plant Prod Sci 11:132–133

    Google Scholar 

  • Touraev A, Forster BP, Jain SM (2009) Advances in haploid production in higher plants. In: Overview of barley doubled haploid production, pp 47–63. https://doi.org/10.1007/978-1-4020-8854-4_3

    Chapter  Google Scholar 

  • Tricase C, Amicarelli V, Lamonaca E et al (2018) Economic analysis of the barley market and related uses. In: Tadele Z (ed) Grasses as food and feed. IntechOpen, London, UK, pp 25–46

    Google Scholar 

  • Tsai H, Janss LL, Andersen JR et al (2020) Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci Rep 10(1):3347. https://doi.org/10.1038/s41598-020-60203-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turuspekov Y, Mano Y, Honda I et al (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109(3):480–487

    CAS  PubMed  Google Scholar 

  • Ullrich SE (2010) Cytogenetics and molecular cytogenetics of barley: A model cereal crop with a large genome, pp 112–121. https://doi.org/10.1002/9780470958636.ch5

    Book  Google Scholar 

  • van Hintum TJ (1994) Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, London, pp 23–34

    Google Scholar 

  • Van Ginkel M, Trethowan RM, Ammar K et al (2002) Guide to bread wheat breeding at CIMMYT. Wheat special report No. 5. (Rev. edn). CIMMYT, Mexico

    Google Scholar 

  • Verma RPS, Sarkar B, Gupta R et al (2008) Breeding barley for malting quality improvement in India. Cereal Res Commun 36:135–145

    Google Scholar 

  • Vincent H, Amri A, Castaneda-Alvarez et al (2019) Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun Biol 2:136

    Google Scholar 

  • Visioni A, Rehman S, Vaish SS et al (2020) Genome wide association mapping of spot blotch resistance at seedling and adult plant stages in barley. Front Plant Sci 11:642

    PubMed  PubMed Central  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C et al (1995) An ecogeographical study of the genus Hordeum, 2nd edn systematic and ecogeographical studies on crop genepools. IBPGR, Rome

    Google Scholar 

  • von Bothmer R, Sato K, Knüpffer H et al (2003) Barley diversity-an introduction. Dev Plant Genet Breed 7:3–8

    Google Scholar 

  • von Korff M, Wang H, Leon J et al (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Google Scholar 

  • Wang JK, Pfeiffer WH (2007) Simulation modeling in plant breeding: principles and applications. Agric Sci China 6:908–921

    Google Scholar 

  • Wang Y, Ren X, Sun D et al (2015) Origin of worldwide cultivated barley revealed by NAM-1 geneand grain protein content. Front Plant Sci 6:803. https://doi.org/10.3389/fpls.2015.00803

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Leng Y, Zhao M et al (2019) Fine mapping of a dominant gene conferring resistance to spot blotch caused by a new pathotype of Bipolaris sorokiniana in barley. Theor Appl Genet 132(1):41–51

    CAS  PubMed  Google Scholar 

  • Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065

    CAS  Google Scholar 

  • Woodworth CM (1931) Breeding for yield in crop plants. J Am Soc Agron 23:388–395

    Google Scholar 

  • Wych RD, Rasmusson DC (1983) Genetic improvement in malting barley cultivars since 1920. Crop Sci 23:1037–1040

    Google Scholar 

  • Xia Y, Li R, Ning Z et al (2013) Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 8(2):e56816. https://doi.org/10.1371/journal.pone.0056816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Kong HY, Meiyalaghan V et al (2018) Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. Theor Appl Genet 131(12):2567–2580

    CAS  PubMed  Google Scholar 

  • Zang W, Eckstein PE, Colin M et al (2015) Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene. Theor Appl Genet 128(7):343–1357

    Google Scholar 

  • Zhang L, Fetch T, Nirmala J et al (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113:847–855

    CAS  PubMed  Google Scholar 

  • Zhang X, Ovenden B, Orchard BA et al (2019) Bivariate analysis of barley scald resistance with relative maturity reveals a new major QTL on chromosome 3H. Sci Rep 9:20263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Roger JE, Jin Y et al (2003) Molecular mapping of the leaf rust resistance gene Rph6 in barley and its linkage relationships with Rph5 and Rph7 604. Phytopathology 93(5):604–609

    CAS  PubMed  Google Scholar 

  • Zhou GF, Johnson P, Ryan PR et al (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed 29:427–436. https://doi.org/10.1007/s11032-011-9559-9

    Article  CAS  Google Scholar 

  • Zhou H, Liu S, Liu Y et al (2016) Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum). BMC Genet 17(1):130. https://doi.org/10.1186/s12863-016-0438-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziems LA, Hickey LT, Platz GJ et al (2017) Characterization of Rph24: a gene conferring adult plant resistance to Puccinia hordei in barley. Phytopathology 107:834–841. PHYTO-08-16-0295-R

    CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Pal Singh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bishnoi, S.K., Patial, M., Lal, C., Verma, R.P.S. (2022). Barley Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_5

Download citation

Publish with us

Policies and ethics