Skip to main content

Barley (Hordeum vulgare L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

Barley (Hordeum vulgare L.) is one of the Neolithic founder crops of Old World agriculture. It is a flowering plant belonging to the family Poaceae or Gramineae (herbs) that is cultivated in temperate climates across the world at 350–4050 m above sea level, and evolved from H. spontaneum (K. Koch) Thell. The economically most important species of the genus is barley, H. vulgare. Species of barley consist of diploid (2n = 2x = 14), tetraploid (2n = 4x = 24), and hexaploid (2n = 6x = 42) cytotypes. Barley constitutes the fourth most important grain crop in the world after wheat, rice and maize. Barley grain is used as livestock feed and forage, malt beverages, human food, soil improvement and has medicinal value, but is barely considered as a highly-needed crop of the present era. Common barley hails originally from western Asia and North Africa. It is one of the earliest documented agricultural grains, dating back to the Neolithic period (8500 years ago) in the Nile Delta portion of the Fertile Crescent. Barley is a rich source of proteins, B vitamins, niacin, minerals and fiber dietary; also, it is a good source of manganese and phosphorus. Raw barley consists of carbohydrates (78%), proteins (10%), water (10%) and fat (1%). This chapter discusses the taxonomy, economic importance, origin and history, germplasm resources, traditional breeding methods and biotechnology methods, and their application for crop improvement in association with conventional breeding methods of barley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding, 1st edn. Blackwell, Malden

    Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Akar T, Avci M, Dusunceli F (2004) Barley: post-harvest operations. http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_BARLEY.pdf

  • Altinkut A, Kazan K, Gozukirmizi N (2003) AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.). Genet Mol Biol 26(1):77–82

    Article  CAS  Google Scholar 

  • Anderson MK, Reinbergs E (1985) Barley breeding. In: Rasmusson D (ed) Barley, ASA Monograph No 26, pp 231–268

    Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64(3):329–347

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Shi B, Hou N et al (2017) MicroRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Blattner FR (2009) Progress in phylogenetic analysis and a new infragenetic classification of barley genus Hordeum (Poaceae:Triticeae). Breed Sci 59:471–480

    Article  CAS  Google Scholar 

  • Blattner FR, Pleines T, Jakob SS (2010) Rapid radiation in the barley genus Hordeum (Poaceae) during the Pleistocene in the Americas. In: Glaubrecht M (ed) Evolution in action. Springer, Berlin, pp 17–33

    Chapter  Google Scholar 

  • Blokhin VI (2006) Peculiarities of cultural practices of barley in Tatarstan. J Zemledeliye 3:15–17

    Google Scholar 

  • Bockelman HE, Valkoun J, Ullrich S (2010) Barley germplasm conservation and resources. Wiley-Blackwell Oxford

    Google Scholar 

  • Boscari A, Clement M, Volkov V et al (2009) Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ 32:1761–1777

    Article  CAS  PubMed  Google Scholar 

  • Bowman JGP, Blake TK, Surber LMM et al (2011) Feed-quality variation in the barley core collection of the USDA national small grains collection. Crop Sci 41:863–870

    Article  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of Cerea l (1→3, 1→4)-β,6-Dglucans as functional food ingredients. J Cereal Sci 42:1–13

    Article  CAS  Google Scholar 

  • Briggs DE (1978) Barley. Chapman and Hall, London. Community Plant Variety Office (CPVO), Angers. 2008. Available at http://www.cpvo.europa.eu/

  • Chand N, Vishwakarma SR, Verma OP, Kumar M (2008) Worth of genetic parameters to sort out new elite barley lines over heterogeneous environments. Barley Gene Newsl 38:10–13

    Google Scholar 

  • Chawla HS, Wenzel G (1987) In vitro selection of barley and wheat for resistance against Helminthosporium sativum. Theor Appl Genet 74:841–845

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hayes PM (1989) A comparison of Hordeum bulbosum mediated haploid production efficiency in barley, using in vitro floret and tiller culture. Theor Appl Genet 77:701–704

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Fan H, Li L et al (2018) Genome-wide identification and expression analyses of rpp13-like genes in barley. Bio Chip J 12(2):102–113

    CAS  Google Scholar 

  • Cho MJ, Jiang W, Lemaux PG, Buchanan BB (1999) Over expression of thioredoxin leads to enhanced activity of starch branching enzyme (pullulanase) in barley grain. Proc Natl Acad Sci U S A (25):14641–14646

    Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1–7

    Article  CAS  Google Scholar 

  • Cossani CM, Slafer GA, Savin R (2011) Do barley and wheat (bread and durum) differ in grain weight stability through seasons and water-nitrogen treatments in a Mediterranean location? Field Crops Res 121:240–247

    Article  Google Scholar 

  • Dawson IK, Russell J, Powell W et al (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–993

    Article  PubMed  Google Scholar 

  • Decoteau DR (2005) Principles of plant science, environmental factors and technology in growing plants. Pearson, Upper Saddle River

    Google Scholar 

  • Dewey RD (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279

    Chapter  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  Google Scholar 

  • Dudits D, Kao KN, Constabel F, Gamborg OL (1976) Fusion of carrot and barley protoplasts and division of heterokaryocytes. Can J Genet Cytol 19:263–269

    Article  Google Scholar 

  • Duke JA (1983) Handbook of energy crops. Hordeum vulgare L. Purdue University, Center for New Crops & Plants Products. Lafayette, Ind. unpublished

    Google Scholar 

  • Dzyubenko NI (2018) Vavilov’s collection of worldwide crop genetic resources in the 21st century. Biopreserv Biobank 16(5):377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Journal (2011) Scientific opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC), No 1924/2006. http://www.efsa.europa.eu/en/efsajournal/doc/2471.pdf, 9(12):2471

  • Eglinton J, Coventry S, Chalmers K (2006) Breeding outcomes from molecular genetics. In: Mercer CF (ed) Proceedings of the 13th Australasian plant breeding conference, Christchurch, New Zealand, 18–21 April 2006, pp 743–749

    Google Scholar 

  • FAO (1996) FAO state of the world’s plant genetic resources for food and agriculture. Rome

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/013/i1500e/i1500e00.htm. Cited 28 Feb 2013

  • FAO (2016) The state of food and agriculture: climate change, agriculture and food security. Available from: https://www.fao.org/3/a-i6030e.pdf

    Google Scholar 

  • FAO (2018) Commission on genetic resources for food and agriculture. Rome

    Google Scholar 

  • FAO/IAEA (2019) Mutant variety database. http://www-naweb.iaea.org/nafa/pbg/index.html

  • FAOSTAT (2018) Food and agriculture organization of the United Nations. http://faostat.fao.org. FAO Statistics Division. Crops Primary data last updated December 20, 2018

  • Fehr WR (1984) Genetic contributions to yield gains of five major crop plants. Spec. Publ. 7. ASA and CSSA, Madison

    Google Scholar 

  • Fehr WR (1987) Principles of cultivar development: theory and technique, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Fischbeck G (2003) Diversification through breeding. In: von Bothmer R, van HT, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, pp 29–52

    Google Scholar 

  • Forster BP, Phillips MS, Miller TE et al (1990) Chromosome location of genes-controlling tolerance to salt (NaCl) and vigor in Hordeum vulgare and Hordeum chilense. Hereditas 65:99–107

    Article  Google Scholar 

  • Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634

    Article  Google Scholar 

  • Global Crop Diversity Trust (2008) Priority crops – barley. http://www.croptrust.org/main/priority.php?itemid=148. Cited 28 Feb 2013

  • Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph 14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T et al (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:1–14

    Article  CAS  Google Scholar 

  • Graham L (2013) Lonely ideas: can Russia compete? MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83(2):250–256

    Article  CAS  PubMed  Google Scholar 

  • Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:2918

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AJF, Wessler SR, Lewontin RC et al (2005) Introduction to genetic analysis, 8th edn. W.H. Freeman & Company, New York

    Google Scholar 

  • Harlan HV (1918) The identification of varieties of barley. U.S. Department of Agriculture Bullettin, p 622

    Google Scholar 

  • Harlan JR (1957) One man’s life with barley. Exposition Press, New York

    Google Scholar 

  • Harten AM van (1998) Mutation breeding: theory and practical applications. Cambridge University Press, London, pp 163–251

    Google Scholar 

  • Hayes HK, Immer FR (1942) Methods of plant breeding. McGraw-Hill, New York

    Book  Google Scholar 

  • Hearnden PR, Eckermann PJ, Mcmichael G et al (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Heneen WK (2011) Cytogenetic and molecular cytogenetic of barley: a model cereal crop with a large genome. In: Ullrich SE (ed) Barley: production, improvement, and uses. Blackwell, London, pp 112–121

    Google Scholar 

  • Hensel G, Valkov V, Williams JM, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Hockett EA (1981) Registration of hulless and hulless short-awned spring barley germplasm. Crop Sci 21:146–147

    Google Scholar 

  • Horsley RD, Franckowiak JD, Schwarz PB (2009) Barley. In: Carena MJ (ed) Cereals. Springer, pp 227–250

    Google Scholar 

  • Horvath H, Huang J, Wong OT et al (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci U S A 97:1914–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R et al (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Nat Acad Sci 100:364–369

    Article  CAS  PubMed  Google Scholar 

  • International Grains Council (2018) Five-year baseline projections of supply and demand for wheat, maize (corn), rice and soyabeans to 2022/23. https://www.igc.int/en/markets/5yeardownload.aspx mode=download.pdf

  • ISBC (2012) International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Islamovic E, Obert DE, Oliver RE et al (2013) A new genetic linkage map of barley (Hordeum vulgare L.) facilitates genetic dissection of height and spike length and angle. Field Crops Res 154:91–99

    Article  Google Scholar 

  • Ivanizs L, Farkas A, Linc G et al (2018) Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines. PLoS One 13(6):e0198758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobsen N, von Bothmer R (1992) Supraspecific groups in the genus Hordeum. Hereditas 116:21–24

    Article  Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. InTech. https://doi.org/10.5772/52583

    Google Scholar 

  • Jiang G-L (2015) Molecular marker-assisted breeding: a plant breeder’s review. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 431–472

    Chapter  Google Scholar 

  • Jost M, Szurman-Zubrzycka M, Gajek K et al (2019) TILLING in barley. In: Harwood WA (ed) Barley: methods and protocols, methods in molecular biology. Springer, Dordrecht, pp 73–94

    Google Scholar 

  • Joung YH, Choi PS, Kwon SY, Harn CH (2015) Plant transformation methods and applications. Chapter 9. In: Koh H-J, Kwon S-Y, Thomson M (eds) Current technologies in plant molecular breeding. Springer, Dordrecht, pp 297–343

    Chapter  Google Scholar 

  • Kang MS, Subudhi PK, Baisakh N, Priyadarshan PM (2007) Crop breeding methodologies: classic and modern. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Hoboken, pp 5–40

    Chapter  Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency of haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Sadasiva RS (1971) Genome relationship between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35:264–287

    Article  Google Scholar 

  • Kihara M, Okada Y, Kuroda H et al (2000) Improvement of β-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol Breed 6:511–517

    Article  CAS  Google Scholar 

  • Kim D-W, Agrawal GK, Rakwal R et al (2014) Genomic methods for improving abiotic stress tolerance in crops. In: Ricroch A, Chopra S, Fleischer S (eds) Plant biotechnology: experience and future prospects. Springer, Cham, pp 35–42

    Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet 94:221–226

    Article  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep 17:362–367

    Article  CAS  PubMed  Google Scholar 

  • Kleinhofs A, Chao S, Sharp PJ (1988) Mapping of nitrate reductase genes in barley and wheat. In: Miller TE, Koebner RMD (eds) Proc 7th International Wheat Genetics Symposium, vol 1. Institute of Plant Science Research, Cambridge, pp 541–546

    Google Scholar 

  • Kling J (2004) An introduction to barley – notes from css 330 world foods class. Accessed 18 Apr 2006. http://oregonstate.edu/instruct/css/330/five/BarleyOverview.htm

  • Knežević D, Pržulj N, Zečević V et al (2004) Breeding strategies for barley quality improvement and wide adaptation. Kragujevac J Sci 26:75–84

    Google Scholar 

  • Kumlehn J, Stein N (2014) Biotechnological approaches to barley improvement. Springer, Berlin

    Book  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G et al (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotech J 4(2):251–261

    Article  CAS  Google Scholar 

  • Kumlehn J, Gurushidze M, Hensel G (2014) Genetic engineering. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 393–407

    Chapter  Google Scholar 

  • Kurowska M, Labocha-Pawłowska A, Gnizda D et al (2012) Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res 738–739:52–70

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1983) Somaclonal variation and crop improvement. In: Kosuge T, Meredith C, Hollaender A (eds) Genetic engineering of plants. Plenum Press, New York, pp 289–314

    Chapter  Google Scholar 

  • Lee G, Kim D, Kwon S et al (2015) Identification of mutagenized plant populations. In: Koh H-J, Kwon S-Y, Thomson M (eds) Current technologies in plant molecular breeding, pp 205–239

    Chapter  Google Scholar 

  • Li X, Cheng X, Liu J et al (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotech Rep 5:61–69

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Muehleisen J, Maurer HP et al (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Lopachev NA, Titova EM, Yatsina NV, Naumkin AV (2001) New cultural practices of barley. J Zemledeliye 4:10–11

    Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • Maluszynski М, Ahloowalia BS, Sigurbjôrnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Martin A, Alvarez JB, Martin LM et al (1999) The development of Tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95

    Article  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomie 3:200–231

    Article  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J (2013) Agriculture: feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • Mehra KL, Arora RK (1982) Plant genetic resources of India, their diversity and conservation. NBPGR scientific monograph 4:60. National Bureau of Plant Genetic Resources, New Delhi

    Google Scholar 

  • Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M et al (2016) Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotech J 14:40–50

    Article  CAS  Google Scholar 

  • Mengesha MH (1984) International germplasm collection, conservation, and exchange at ICRISTA. In: Conservation of crop germplasm-international perspective. Crop Science Society of America, Madison, pp 47–54

    Google Scholar 

  • Mittler R, Shulaev V (2013) Functional genomics, challenges and perspectives for the future. Physiol Plant 148:317–321

    Article  CAS  PubMed  Google Scholar 

  • Mlčochová L, Chloupek O, Uptmoor R et al (2004) Molecular analysis of the barley cv. ‘Valticky’ and its X-ray-derived semidwarf-mutant ‘Diamant. Plant Breed 123(5):421–442

    Article  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249

    Article  CAS  Google Scholar 

  • Mrízová K, Holasková E, TufanÖz M et al (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotech Adv 32:137–157

    Article  CAS  Google Scholar 

  • Mylonas IG, Georgiadis A, Apostolidis AP et al (2014) Barley cultivar discrimination and hybrid purity control using RAPD markers. Romanian Biotech Lett 19(3):9421–9428

    CAS  Google Scholar 

  • Nagel M, Vogel H, Landjeva S et al (2009) Seed conservation in ex situ genebanks-genetic studies on longevity in barley. Euphytica 170:5–14

    Article  CAS  Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 19–43

    Google Scholar 

  • Nevski SA (1941) Beiträge zur Kenntniss der wildwachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. and Hordeum distichon L. (Versuch einer Monographie der Gattung Hordeum). Trudy Bot Inst Akad Nauk SSSR Ser 1(5):64–255

    Google Scholar 

  • Newman RK, Newman CW (2008) Barley for food and health: science, technology, and products. Wiley, Hoboken

    Book  Google Scholar 

  • Newton AC, Flavell AJ, George TS et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec 3:141–178

    Article  Google Scholar 

  • Oh S, Kwon C, Choi D et al (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J 5:646–656

    Article  CAS  Google Scholar 

  • Ohnoutkova L (2019) Mutation breeding in barley: historical overview. In: Harwood WA (ed) Barley: methods and protocols. Springer, Dordrecht, pp 7–19

    Chapter  Google Scholar 

  • Patrick H, Alfonso C-M (2013) New and renewed breeding methodology. In: Zhang G, Li G, Liu X (eds) Advance in barley sciences: proceedings of 11th international barley genetics symposium. Zhejiang University Press and Springer, Dordrecht, pp 349–357

    Chapter  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K (2011) Crop responses to temperature and precipitation according to long-term multi-location trials at high latitude conditions. J Agric Sci 149(1):49–62

    Article  Google Scholar 

  • Penna S, Vitthal SB, Yadav PV (2012) In vitro mutagenesis and selection in plant cultures and their prospects for crop improvement. Bioremed Biodiv Bioavail 6(1):6–14

    Google Scholar 

  • Petersen G, Seberg O (2003) Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Syst Bot 28:293–306

    Google Scholar 

  • Pickering R (1983) The location of a gene for incompatibility between Hordeum vulgare L. and H. bulbosum L. Hereditas 51:455–459

    Article  Google Scholar 

  • Pickering R (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare, H. bulbosum. Plant Sci 34:153–164

    Google Scholar 

  • Pickering R (2000) Do the wild relatives of cultivated barley have a place in barley improvement? In: Logue S (ed) Barley genetics VIII: Proceedings of the 8th international barley genetics symposium, vol I. Department of Plant Science, Waite Campus, Adelaide University, Australia, pp 223–230

    Google Scholar 

  • Pickering RA, Hill AM, Michel M et al (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Rakshit S, Ganapathy KN (2014) Comparative genomics of cereal crops: status and future prospects. In: Kavi Kishor PB, Bandopadhyay R, Suravajhala P (eds) Agricultural bioinformatics. Springer, New Delhi, pp 59–87

    Google Scholar 

  • Ramage RT (1985) Cytogenetics in barley. In: Rasmusson DC (ed) ASA Monograph No. 26, pp 127–154

    Google Scholar 

  • Ramireddy E, Hosseini SA, Eggert K et al (2018) Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol 177:1078–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao GJN, Reddy JN, Variar M, Mahender A (2016) Molecular breeding to improve plant resistance to abiotic stresses. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 283–326

    Chapter  Google Scholar 

  • Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 397–445

    Chapter  Google Scholar 

  • Ren X, Wang J, Liu L et al (2016) SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley. Sci Rep 6:31741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut J-M, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6

    Article  Google Scholar 

  • Robinson RA (2007) Crop histories, 2nd ed., Rev. Sharebook Publishing. www.sharebooks.ca

  • Rohila JS, Rajinder K, Wua J, Wua R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Roy SJ, Huang W, Wang XJ et al (2013) A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ 36:553–568

    Article  CAS  PubMed  Google Scholar 

  • Saikumar K, Kumar VD (2014) Plant micrornas: an overview. In: Kishor PB, Bandopadhyay K, Suravajhala R (eds) Agricultural bioinformatics. Springer, New Delhi, pp 139–159

    Google Scholar 

  • Saitou N (2004) Genome and evolution. Shinyo-Sha, Tokyo. (in Japanese)

    Google Scholar 

  • Saitou N (2013) Introduction to evolutionary genomics, computational biology. Springer, London

    Book  Google Scholar 

  • Salvi S, Druka A, Milner SG, Gruszka D (2014) Induced genetic variation, TILLING and NGS-based cloning. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 287–310

    Chapter  Google Scholar 

  • Sato K, Flavell AJ, Russell JL et al (2014) Genetic diversity and germplasm management: wild barley, landraces, breeding materials. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. biotechnology in agriculture and forestry, vol 69. Springer, Berlin, pp 21–36

    Chapter  Google Scholar 

  • Schillinger WF, Cook RJ, Papendick RI (1999) Increased dryland cropping intensity with no-till barley. Agron J 91:744–752

    Article  Google Scholar 

  • Shackley BJ (2000) Crop management. In: Anderson WK, Garlinge JR (eds) The wheat book: principles and practice. Department of Agriculture and Food, Western Australia, Perth. Bulletin 4443:131–164

    Google Scholar 

  • Singh RJ (2006) Utilization of genetic resources for barley improvement. In: Singh R, Prem J, Jauhar P (eds) Genetic resources, chromosome engineering, and crop improvement series volume 2 cereals. Taylor & Francis, London, pp 233–255

    Chapter  Google Scholar 

  • Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

    Book  Google Scholar 

  • Singh J, Zhang S, Chen C (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62(6):937–950

    Article  CAS  PubMed  Google Scholar 

  • Soltész A, Vágújfalvi A, Rizza F et al (2012) The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genet 53:133–143

    Article  PubMed  CAS  Google Scholar 

  • Soltész A, Smedley M, Vashegyi I et al (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exper Bot 64(7):1849–1862

    Article  CAS  Google Scholar 

  • Somers DA, Narayanan KR, Kleinhofs A et al (1986) Immunological evidence for transfer of the barley nitrate reductase structural gene to Nicotiana tabacum by protoplast fusion. Mol Gen Genet 204:296–301

    Article  CAS  Google Scholar 

  • Sparla F, Falini G, Botticella E et al (2014) New starch phenotypes produced by TILLING in barley. PLoS One 9(10):e107779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer-Lopes MM, Forster BP, Jankuloski L (2018) Manual on mutation breeding, 3rd ed. FAO/IAEA, Vienna

    Google Scholar 

  • Stein N (2014) Development of sequence resources. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 271–285

    Chapter  Google Scholar 

  • Sun DF, Gong X (2009) Barley germplasm and utilization. In: Genetics and improvement of barley malt quality. Zhejiang University Press/Springer, Hangzhou /Berlin, pp 18–62

    Chapter  Google Scholar 

  • Szarejko I, Forster B (2007) Doubled haploidy and induced mutation. Euphytica 158(3):359–370

    Article  Google Scholar 

  • Szarejko I, Maluszynski M, Polok K, Kilian A (1991) Doubled haploids in the mutation breeding of selected crops. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp 355–378

    Google Scholar 

  • Szarejko I, Guzy J, Davalos J et al (1995) Production of mutants using barley DH systems. In: Induced mutations and molecular techniques for crop improvement. IAEA, Vienna, pp 517–530

    Google Scholar 

  • Tantau H, Balko C, Brettschneider B et al (2004) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline over accumulating lines. Euphytica 139:19–32

    Article  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tull D, Phillipson BA, Kramhoft B et al (2003) Enhance amylolytic activity in germinating barley through synthesis of a bacterial alpha-amylase. J Cereal Sci 37:71–80

    Article  CAS  Google Scholar 

  • Umba di-Umba U, Maluszynski M, Szarejko I, Zbieszczyk J (1991) High frequency of barley DH-mutants from M1 after mutagenic treatment with MNH and sodium azide. MBNL 38:8–9

    Google Scholar 

  • USDA (2018) United States Department of Agriculture Foreign Agricultural Service, Office of Global Analysis, Washington, DC

    Google Scholar 

  • USDA (2019) United States Department of Agriculture Foreign Agricultural Service, Office of Global Analysis. February 2019, https://apps.fas.usda.gov/psdonline/circulars/grain.pdf

  • Vagera J, Novotny J, Ohnoutkova L (2004) Induced and neurogenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tissue Organ Cult 77:55–61

    Article  CAS  Google Scholar 

  • van Hintum T, Menting F (2003) Diversity in ex situ genebank collections of barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science, Amsterdam, pp 247–257

    Google Scholar 

  • Vasil V, Vasil IK (1979) Isolation and culture of cereal protoplasts. I. Callus formation from pearl millet (Pennisetum americanum) protoplasts. Z Pflanzenphysiol 92:379–383

    Article  Google Scholar 

  • Verstegen H, Köneke O, Korzun V, von Broock R (2014) The world importance of barley and challenges to further improvements. In: Kumlehn J, Stein N (ed) Biotechnological approaches to barley improvement. Springer Berlin, pp 3–19

    Chapter  Google Scholar 

  • von Bothmer R (1992) The wild species of Hordeum: relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 3–18

    Google Scholar 

  • von Bothmer R (1996) Distribution and habitat preferences in the genus Hordeum in Iran and Turkey. Ann Natur Hist Mus Wien 98 B(Suppl):107–116

    Google Scholar 

  • von Bothmer R, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson D (ed) Barley. ASA Monograph No. 26, pp 19–56

    Google Scholar 

  • von Bothmer R, Linde-Laursen I (1989) Backcrosses to cultivated barley (Hordeum vulgare L.) and partial elimination of alien chromosomes. Hereditas 111:145–147

    Article  Google Scholar 

  • von Bothmer R, Flink J, Jacobsen N et al (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99:219–244

    Article  Google Scholar 

  • von Bothmer R, Seberg O, Jacobsen N (1992) Genetic resources in the Triticeae. Hereditas 116: 141–150

    Article  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C et al (1995) An ecogeographical study of the genus Hordeum, 2nd ed. Systematic and ecogeographic studies on crop gene pools. No 7. IBPGR, Rome

    Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T et al (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, pp 9–27

    Google Scholar 

  • Wan B (2015) Transgenic pyramiding for crop improvement. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 369–396

    Chapter  Google Scholar 

  • Wang L, Xue Q, Newman RK, Newman CW (1993) Enrichment of tocopherol, tocotrienol, and oil in barley by milling and pearling. Cereal Chem 70(5):499–501

    CAS  Google Scholar 

  • Wang J, Jiang J, Wang Y (2013) Protoplast fusion for crop improvement and breeding in China. Plant Cell Tissue Organ Cult 112:131–142

    Article  Google Scholar 

  • Wiebe GA (1978) Breeding. In: Barley: origin, botany, culture, winter hardiness, genetics, utilization, and pests. Agriculture Handbook 338. USDA, Washington, DC, pp 117–127

    Google Scholar 

  • Williams JT (1989) Plant germplasm preservation: a global perspective. In: Knutson L, Stoner AK (eds) Biotic diversity and germplasm preservation, global imperatives. Kluwer, Dordrecht, pp 81–96

    Chapter  Google Scholar 

  • Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Verlag Von Gustav Fischer, Jena

    Google Scholar 

  • Xu Y, Xie C, Wan J et al (2013) Marker-assisted selection in cereals: platforms, strategies and examples. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp 375–411

    Chapter  Google Scholar 

  • Yawson DO, Mulholland BJ, Ball T et al (2017) Effect of climate and agricultural land use changes on UK feed barley production and food security to the 2050s. Land 6(74):1–14

    Google Scholar 

  • Zalewski W, Galuszka P, Gasparis S et al (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li C (2009) Genetics and improvement of barley malt quality. Zhejiang University Press/Springer, Hangzhou/Berlin

    Google Scholar 

  • Zhao T, Palotta M, Langridge P (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47(5):811–826

    Article  PubMed  Google Scholar 

  • Zhou G, Zhang Q, Tan C et al (2015) Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genomics 16:804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zohary D, Hopf M (1993) Domestication of plants in the old World. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Fathy El-Hashash .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1.1 Appendix I: Major Institutions Engaged in Barley Research

Institution

Specialization and research activities

Contact information and website

International Barley Hub, James Hutton Institute

Barley research

Dundee, Scotland, UK, email: barleyhub@hutton.ac.uk, www.barleyhub.org

ICAR-Indian Institute of Wheat and Barley Research (IIWBR)

Increasing and stabilizing the barley production

Karnal-132001, Haryana, India, Email: director.iiwbr@icar.gov.in, http://www.iiwbr.org/

Brewing and Malting Barley Research Institute

Malting barley research

P.O. Box 39120 Lakewood PO, Saskatoon, Saskatchewan S7V 0A9, Canada, Email: gfeist@bmbri.ca., http://bmbri.ca/

Canadian Malting Barley Technical Centre

Providing technical support and market information to stakeholders of barley

1365-303 Main Street Winnipeg, Manitoba, Canada R3C 3G7, E-mail: cmbtc@cmbtc.com, http://cmbtc.com/

Institute of Barley and Malt Sciences

Promote the informational and educational activities/resources on barley and malt at North Dakota State University.

NDSU Dept. 7670, 166 Loftsgard Hall, N. Bolley Dr. Fargo, ND 58102. North Dakota State University, https://www.ag.ndsu.edu

Alberta’s Field Crop Development Centre (FCDC)

The Field Crop Development Centre focuses on breeding barley for feed, malt and food

Toll-free in Alberta: 310-FARM (310-3276), Out of province 1-403-742-7901, Email: Ag Info Centre, https://www1.agric.gov.ab.ca

Global Crop Diversity Trust

International organization dedicated solely to conserving and making available barley and other crops diversity.

Platz Der Vereinten Nationen 753113 Bonn, Germany, info@croptrust.org, https://www.croptrust.org

1.1.2 Appendix II: Barley Genetic Resources

1.1.2.1 (A) Barley Genetic Resources Available in the Ex Situ Germplasm Collections of PGRC, NSGC and ICARDA

Species

Number of available accessions of barley

PGRC

NSGC

ICARDA

H. vulgare ssp. spontaneum

3875

1504

1696

H. vulgare ssp. agriochriton

1

9

H. vulgare ssp. vulgare

22,882

25,024

23,639

H. vulgare

9684

H. vulgare var. distichon

Hordeum mutant collection

Other species

5372

6647

6656

Total

41,813

33,176

32,000

  1. Sources: PGRC, www.agr.gc.ca/pgrc-rpc; NSGC, www.ars-grin.gov/npgs; ICARDA, www.icarda.cgiar.org

1.1.2.2 (B) Total Barley Germplasm Accessions Available at Ten Major Centers of the World

Rank

Country, city

Name/institution

Acronym

Code

Number of acces-sions

1

Canada, Saskatoon

Plant Gene Resources of Canada

PGRC

CAN004

41,813

2

USA, Aberdeen

USDA National Small Grain Collection

NSGC

USA029

33,176

3

Syria, Aleppo

International Centre for Agricultural Research in Dry Areas

ICARDA

SYR002

32,000

4

Brazil, Brasilia

Centro Nacional de Pesquisa de Recursos Genéticos e Biotec.

CENARGEN

BRA003

30,000

5

Japan, Ibaraki

National Institute of Agrobiologicl Sciences

NIAS

JPN003

23,471

6

Germany, Gatersleben

Institute of Plant Genetics and Crop Plant Research

IPK

DEU146

22,106

7

China, Beijing

Institute of Crop Germplasm Resources

CAAS

CHN001

18,818

8

Republic Korea

Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration Suwon

RDAGB-GRD

KOR003

18,764

9

Russia, St. Petersburg

N.I. Vavilov Research Institute of Plant Industry

VIR

RUS001

17,850

10

Ethiopia, Addis Ababa

Biodiversity Conservation and Research Institute

BCRI

ETH001

16,388

11

Others countries

212,145

Total

466,531

1.1.2.3 (C) Total Barley Germplasm Accessions Available at Ten Major World Centers

Rank

Gene bank/Institutes

Wild %

Landraces %

Breeding materials %

Genetic stocks %

Cultivars %

Unknown status %

1

PGRC

15

35

12

15

13

10

2

NSGC

7

44

13

11

15

12

3

ICARDA

7

59

17

2

9

6

4

CENARGEN

0

0

0

0

0

100

5

NIAS

4

75

0

20

0

0

6

IPK

6

56

10

2

23

2

7

CAAS

14

82

0

0

0

4

8

RDAGB-GRD

1

24

10

0

0

66

9

VIR

1

29

10

3

54

3

10

BCRI

0

100

0

0

0

0

1.1.2.4 (D) List of Mutant Barley Varieties in World During 2000/2010 Period

No.

Variety name

Mutant type

Local registration year

Country

Character improvement details

1

Phenix

Crossing with 1 mutant variety

2000

Ukraine

Drought tolerance

2

Gama

Direct use of an induced mutant

2000

Ukraine

High yield

3

Dobrynia-3

Direct use of an induced mutant

2001

Russia

Low temperature tolerance

4

Hutorok

Direct use of an induced mutant

2004

Russia

Improved adaptability

5

Pavel

Direct use of an induced mutant

2003

Russia

Stiffness

6

Stimul

Direct use of an induced mutant

2003

Russia

Early maturity

7

Cruiser

Crossing with 1 mutant variety

2001

Germany

Erected type

8

Felicitas

Crossing with 1 mutant variety

2005

Germany

Erected type

9

Landora

Crossing with 1 mutant variety

2000

Germany

Erected type

10

Penelope

Crossing with 1 mutant variety

2001

Germany

Erected type

11

Penofuli

Crossing with 1mutant variety

2001

Germany

Erected type

12

Roxana

Crossing with 1mutant variety

2000

Germany

Erected type

13

Centenario

Direct use of an induced mutant with gamma rays (300 Gy)

2006

Peru

Altered maturity and improved seed production traits

14

Centenario

Direct use of an induced mutant with gamma rays (400 Gy)

2006

Peru

Improved seed production traits

15

Sayakaze

Crossing with 1 mutant

2003

Japan

Early maturity, good quality, short culm, superior lodging resistance and resistance to barley yellow mosaic virus

16

Furat 3

Direct use of an induced mutant with gamma rays

2000

Syria

Resistance to lodging, resistance to drought and high yield

17

IZ Bori

Direct use of an induced mutant

2009

Bulgaria

Tolerance to low temperatures, very good resistance to powdery mildew, as well as to brown, black and stem rust, high grain yield (15–17%), high grain protein and lysine content

18

Scope

Direct use of an induced mutant

2010

Australia

Herbicide tolerance, high yield, early maturity

19

Janus

Direct use of an induced mutant

2003

Russia

Cold tolerance

20

Taran

Direct use of an induced mutant

2003

Russia

High tolerance of cold

  1. Source: FAO/IAEA (2019) Mutant Variety Database. http://www-naweb.iaea.org

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Hashash, E.F., El-Absy, K.M. (2019). Barley (Hordeum vulgare L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_1

Download citation

Publish with us

Policies and ethics