Skip to main content

Molecular Mechanisms of Superoxide Dismutase (SODs)-Mediated Defense in Controlling Oxidative Stress in Plants

  • Chapter
  • First Online:
Antioxidant Defense in Plants

Abstract

Superoxide dismutases (SODs) are pervasive metalloenzymes that comprise the very first line of defense versus reactive oxygen species (ROS). It constitutes one of the most important enzymatic parts of detoxification of superoxide radicals that are produced in biological systems through catalyzing its dismutation to H2O2 and eventually to H2O as well as O2 depending on the catalase and peroxidase. In general, plant species includes several SOD isoforms varying in their active site metal ions, specifically Cu/Zn-SOD, Mn-SOD, and Fe-SOD. Numerous studies also stated that the tolerance levels of plants are positively associated with SOD activity at the same time as well as along with the number of SOD isoforms and founded the fact that “the greater the SOD activity, the greater the stress tolerance.” Hence, the SOD isozyme profile of any plant could be used as a balanced marker used for stress tolerance in plants. Throughout this chapter, we have talked about the title role of SOD in abiotic and biotic stress tolerance, kinds of SODs, and the correlation of its activity and its isoforms along with stress tolerance level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeliovich A, Kellenberg D, Shilo M (1974) Effect of photooxidative conditions on levels of superoxide dismutase in Anacystis nidulans. Photochem Photobiol 19(5):379–382

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Khimnani P (2000) The role of superoxide dismutase in stress tolerant plants. Advances in Plant Physiology 3:241

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurand L, Boone N, Giddings G (1977) Superoxide and singlet oxygen in milk lipid peroxidation. J Dairy Sci 60(3):363–369

    Article  CAS  Google Scholar 

  • Azevedo R, Alas R, Smith R, Lea P (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104(2):280–292

    Article  CAS  Google Scholar 

  • Bafana A, Dutt S, Kumar A, Kumar S, Ahuja PS (2011) The basic and applied aspects of superoxide dismutase. J Mol Catal B Enzym 68(2):129–138

    Article  CAS  Google Scholar 

  • Baum J, Scandalios J (1982) Multiple genes controlling superoxide dismutase expression in maize. J Hered 73(2):95–100

    CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C et al (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10(7):1723–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116

    Article  CAS  Google Scholar 

  • Broxton CN, Culotta VC (2016) SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathog 12(1):e1005295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58(1):79–110

    Article  CAS  PubMed  Google Scholar 

  • Carroll EW, Schwarz OJ, Hickok LG (1988) Biochemical studies of paraquat-tolerant mutants of the fern Ceratopteris richardii. Plant Physiol 87(3):651–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R et al (2010) Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci 88(4):1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Chai H, Doke N (1987) Superoxide anion generation: a response of potato leaves to infection with Phytophthora infestans. Phytopathology 77(5):645–649

    Article  CAS  Google Scholar 

  • Han L-M, Hua W-P, Cao X-Y, Yan J-A, Chen C, Wang Z-Z (2020) Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene 742:144603

    Article  CAS  PubMed  Google Scholar 

  • Christopher P (2018) Resistance to photosystem I disrupting herbicides. In: Herbicide resistance in plants. CRC Press, pp 61–82

    Chapter  Google Scholar 

  • Clare DA, Rabinowitch HD, Fridovich I (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch Biochem Biophys 231(1):158–163

    Article  CAS  PubMed  Google Scholar 

  • Dias JS, Ortiz R (2012) Transgenic vegetable crops: progress, potentials and prospects. Plant Breed Rev 35:151–246

    Google Scholar 

  • Ensminger MP, Hess FD, Bahr JT (1985) Nitro free radical formation of diphenyl ether herbicides is not necessary for their toxic action. Pestic Biochem Physiol 23(2):163–170

    Article  CAS  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138(4):430–439

    Article  CAS  PubMed  Google Scholar 

  • Garab G, Lajkó F, Mustárdy L, Márton L (1989) Respiratory control over photosynthetic electron transport in chloroplasts of higher-plant cells: evidence for chlororespiration. Planta 179(3):349–358

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci 87(16):6181–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin J, Palmer R (1989) Genetic studies with two superoxide dismutase loci in soybean. Crop Sci 29(4):968–971

    Article  CAS  Google Scholar 

  • Guleria S, Jain R, Singh D, Kumar S (2021) A thermostable Fe/Mn SOD of Geobacillus sp. PCH100 isolated from glacial soil of Indian trans-Himalaya exhibits activity in the presence of common inhibitors. Int J Biol Macromol 179:576–585

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 15(4):129–135

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Harper D, Harvey B (1978) Mechanism of paraquat tolerance in perennial ryegrass: II. Role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ 1(3):211–215

    Article  Google Scholar 

  • Hassan HM (1988) Biosynthesis and regulation of superoxide dismutases. Free Radic Biol Med 5(5–6):377–385

    Article  CAS  PubMed  Google Scholar 

  • Hickok LG, Warne TR, Slocum MK (1987) Ceratopteris richardii: applications for experimental plant biology. Am J Bot 74(8):1304–1316

    Article  Google Scholar 

  • Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

    Article  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158

    Article  Google Scholar 

  • Jansen MA, Malan C, Shaaltiel Y, Gressel J (1990) Mode of evolved photooxidant resistance to herbicides and xenobiotics. Zeitschrift für Naturforschung C 45(5):463–469

    Article  CAS  Google Scholar 

  • Jansen MA, Babu TS, Heller D, Gaba V, Mattoo AK, Edelman M (1996) Ultraviolet-B effects on Spirodela oligorrhiza: induction of different protection mechanisms. Plant Sci 115(2):217–223

    Article  CAS  Google Scholar 

  • Kaloshian I, Desmond OJ, Atamian HS (2011) Disease resistance-genes and defense responses during incompatible interactions. In: Genomics and molecular genetics of plant-nematode interactions. Springer, pp 309–324

    Chapter  Google Scholar 

  • Kele Y, Ünyayar S (2004) Responses of antioxidant defense system of Helianthus annuus to abscisic acid treatment under drought and waterlogging. Acta Physiol Plant 26(2):149–156

    Article  Google Scholar 

  • Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E (2020) Oxygen and ROS in photosynthesis. Plants 9(1):91

    Article  CAS  PubMed Central  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24(5):889–896

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48(1):251–275

    Article  CAS  Google Scholar 

  • Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q et al (2017) Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Front Plant Sci 8:1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C-T, Lin M-T, Chen Y-T, Shaw J-F (1995) Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol Biol 28(2):303–311

    Article  CAS  PubMed  Google Scholar 

  • Maqsood A, Wu H, Kamran M, Altaf H, Mustafa A, Ahmar S et al (2020) Variations in growth, physiology, and antioxidative defense responses of two tomato (Solanum lycopersicum L.) cultivars after co-infection of Fusarium oxysporum and Meloidogyne incognita. Agronomy 10(2):159

    Article  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Membrillo-Hernández J, Coopamah MD, Anjum MF, Stevanin TM, Kelly A, Hughes MN, Poole RK (1999) The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274(2):748–754

    Article  PubMed  Google Scholar 

  • Miller OK, Hughes KW (1980) Selection of paraquat-resistant variants of tobacco from cell cultures. In Vitro 16(12):1085–1091

    Article  Google Scholar 

  • Minton KW, Tabor H, Tabor CW (1990) Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc Natl Acad Sci 87(7):2851–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Ahamed KU, Hakeem KR, Ozturk M, Fujita M (2015) Plant responses and tolerance to high temperature stress: role of exogenous phytoprotectants. In: Crop production and global environmental issues. Springer, pp 385–435

    Chapter  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49(2):157–165

    Article  CAS  Google Scholar 

  • Perl-Treves R, Galun E (1991) The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol 17(4):745–760

    Article  CAS  PubMed  Google Scholar 

  • Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ (2018) The challenge of herbicide resistance around the world: a current summary. Pest Manag Sci 74(10):2246–2259

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitch HD, Fridovich I (1985) Growth of Chlorella sorokiniana in the presence of sulfite elevates cell content of superoxide dismutase and imparts resistance towards paraquat. Planta 164(4):524–528

    Article  CAS  PubMed  Google Scholar 

  • Radić S, Babić M, Škobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73(3):336–342

    Article  PubMed  CAS  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sade B, Soylu S, Soylu E (2011) Drought and oxidative stress. Afr J Biotechnol 10(54):11102–11109

    Article  CAS  Google Scholar 

  • Salah A, Li J, Ge J, Cao C, Li H, Wang Y et al (2019) Morphological and physiological responses of maize seedlings under drought and waterlogging. J Agric Sci Technol 21(5):1199–1214

    Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72(3):681–689

    Article  CAS  Google Scholar 

  • Samuelsson B, Dahlen S-E, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Kunert KJ (1986) Lipid peroxidation in higher plants: the role of glutathione reductase. Plant Physiol 82(3):700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöner S, Krause GH (1990) Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180(3):383–389

    Article  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal LM, Wilson RA (2018) Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet Biol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shaaltiel Y, Gressel J (1986) Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pestic Biochem Physiol 26(1):22–28

    Article  CAS  Google Scholar 

  • Shaaltiel Y, Chua N-H, Gepstein S, Gressel J (1988) Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis. Theor Appl Genet 75(6):850–856

    Article  CAS  Google Scholar 

  • Somersalo S, Krause G (1989) Photoinhibition at chilling temperature. Planta 177(3):409–416

    Article  CAS  PubMed  Google Scholar 

  • Song L, Yi R, Luo H, Jiang L, Gu S, Yu Z (2020) Postharvest 1-methylcyclopropene application delays leaf yellowing of pak choi (Brassica rapa subsp. chinensis) by improving chloroplast antioxidant capacity and maintaining chloroplast structural integrity during storage at 20 °C. Sci Hortic 270:109466

    Article  CAS  Google Scholar 

  • Steinberg M, Rabinowitch HD (1991) The role of oxygen in thermo-photodynamic processes leading to sunscald-like damages in green tissues. Free Radic Res Commun 13(1):809–817

    Article  Google Scholar 

  • Steinitz Y, Mazor Z, Shilo M (1979) A mutant of the cyanobacterium Plectonema boryanum resistant to photooxidation. Plant Sci Lett 16(2–3):327–335

    Article  CAS  Google Scholar 

  • Steinman HM, Ely B (1990) Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme. J Bacteriol 172(6):2901–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M et al (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148(2):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaneva IR, Weiss B (1990) soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172(8):4197–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang E, Bowler C, Hérouart D, Van Camp W, Villarroel R, Genetello C et al (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3(8):783–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varsamis, D. G. (2008). Development of a fluidic sensor for the detection of herbicides using thylakoid preparations immobilised on magnetic beads to aid regenerability

    Google Scholar 

  • Wild A, Richter M, Rühle W (1990) The mechanism of photoinhibition of spinach thylakoids. In: Current research in photosynthesis. Springer, pp 1337–1340

    Chapter  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83(2):272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang J, Li X, Xu J, Wang L (2016) Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.). Scribn et Merr Plant Growth Regul 79(1):55–64

    Article  CAS  Google Scholar 

  • Xi J, Xu P, Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J 69(5):782–791

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8(6):e24525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye B, Gressel J (2000) Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta 211(1):50–61

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batool, R., Umer, M.J., Hussain, B., Anees, M., Wang, Z. (2022). Molecular Mechanisms of Superoxide Dismutase (SODs)-Mediated Defense in Controlling Oxidative Stress in Plants. In: Aftab, T., Hakeem, K.R. (eds) Antioxidant Defense in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7981-0_8

Download citation

Publish with us

Policies and ethics