Skip to main content

Computational Aspects of Surface and Interface of BDD Electrode

  • Chapter
  • First Online:
Diamond Electrodes

Abstract

Boron-doped diamond (BDD) has attracted much attention from various viewpoints such as superconductivity and electrochemical applications. To understand these characters, first-principles calculation studies based on density functional theory (DFT) have been performed in some decades. Associated with the BDD superconductivity, many calculations of bulk BDD characters such as the electronic states, Boron configurations inside and so on were carried out, providing a reasonable superconductivity mechanism. In contrast, mechanisms of the electrochemical behaviors remain mostly unresolved. Due to the heavy computational costs, most studies examined BDD surfaces in vacuum and the adsorption of some water molecules. These provided some meaningful aspects, but were insufficient to understand the interfacial redox (electron transfer) reactions between the BDD electrode and the aqueous solution. Recently, DFT molecular dynamics calculations of the BDD/water interfaces were performed, which indicated the equilibrium structures and electronic states of the BDD/water interfaces as well as their dependence on the BDD electrode termination. Besides, a theory to understand the interfacial electron transfer mechanism was provided, on the basis of the DFT results. In this chapter, these theoretical analyses via DFT calculations of BDD bulk, surfaces in vacuum and interfaces with water are surveyed. This will give a useful perspective for the future theoretical and computational studies of electrochemical reactions of the BDD electrode, and the other electrode materials as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428(6982):542–545. https://doi.org/10.1038/nature02449

  2. Lee KW, Pickett WE (2004) Superconductivity in boron-doped diamond. Phys Rev Lett 93(23):1–4. https://doi.org/10.1103/PhysRevLett.93.237003

    Article  CAS  Google Scholar 

  3. Boeri L, Kortus J, Krogh Andersen O (2006) Normal and superconducting state properties of b-doped diamond from first-principles. Sci Technol Adv Mater 7(SUPPL. 1):S54–S59. https://doi.org/10.1016/j.stam.2006.04.009

    Article  CAS  Google Scholar 

  4. Shirakawa T, Horiuchi S, Ohta Y, Fukuyama H (2007) Theoretical study on superconductivity in boron-doped diamond. J Phys Soc Japan 76(1):1–9. https://doi.org/10.1143/JPSJ.76.014711

    Article  CAS  Google Scholar 

  5. Moussa JE, Cohen ML (2008) Constraints on T(c) for superconductivity in heavily boron-doped diamond. Phys Rev B 77(6). https://doi.org/10.1103/PhysRevB.77.064518

  6. Oguchi T (2006) Electronic structure of B-doped diamond: a first-principles study. Sci Technol Adv Mater 7(SUPPL. 1):S67–S70. https://doi.org/10.1016/j.stam.2006.03.008

    Article  CAS  Google Scholar 

  7. Klein T, Achatz P, Kacmarcik J, Marcenat C, Gustafsson F, Marcus J, Bustarret E, Pernot J, Omnes F, Sernelius BE, Persson C, da Silva AF, Cytermann C (2007) Metal-insulator transition and superconductivity in boron-doped diamond. Phys Rev B 75(16). https://doi.org/10.1103/PhysRevB.75.165313

  8. Fujishima A, Einaga Y, Rao TN, Tryk DA (2005) Diamond electrochemistry. Elsevier Inc

    Google Scholar 

  9. Einaga Y (2010) Diamond electrodes for electrochemical analysis. J Appl Electrochem 40(10):1807–1816. https://doi.org/10.1007/s10800-010-0112-z

    Article  CAS  Google Scholar 

  10. Swain GM, Ramesham R (1993) The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal Chem 65(4):345–351. https://doi.org/10.1021/ac00052a007

    Article  CAS  Google Scholar 

  11. Swain GM (1994) The use of CVD diamond thin films in electrochemical systems. Adv Mater 6(5):388–392. https://doi.org/10.1002/adma.19940060511

    Article  CAS  Google Scholar 

  12. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  13. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press

    Google Scholar 

  14. Bourgeois E, Bustarret E, Achatz P, Omnes F, Blase X (2006) Impurity dimers in superconducting B-doped diamond: experiment and first-principles calculations. Phys Rev B 74(9). https://doi.org/10.1103/PhysRevB.74.094509

  15. Oguchi T (2008) Electronic structure of boron-doped diamond with B-H complex and B pair. Sci Technol Adv Mater 9(4):20–24. https://doi.org/10.1088/1468-6996/9/4/044211

    Article  Google Scholar 

  16. Long R, Dai Y, Guo M, Yu L, Huang B, Zhang R, Zhang W (2008) Effect of B-complexes on lattice structure and electronic properties in heavily boron-doped diamond. Diam Relat Mater 17(3):234–239. https://doi.org/10.1016/j.diamond.2007.12.019

    Article  CAS  Google Scholar 

  17. Futera Z, Watanabe T, Einaga Y, Tateyama Y (2014) First principles calculation study on surfaces and water interfaces of boron-doped diamond. J Phys Chem C 118(38):22040–22052. https://doi.org/10.1021/jp506046m

    Article  CAS  Google Scholar 

  18. Goss JP, Briddon PR (2006) Theory of boron aggregates in diamond: first-principles calculations. Phys Rev B 73(8). https://doi.org/10.1103/PhysRevB.73.085204

  19. Hassan MM, Larsson K (2014) Effect of surface termination on diamond (100) surface electrochemistry. J Phys Chem C 118(40):22995–23002. https://doi.org/10.1021/jp500685q

    Article  CAS  Google Scholar 

  20. Zou Y, Larsson K (2016) Effect of boron doping on the CVD growth rate of diamond. J Phys Chem C 120(19):10658–10666. https://doi.org/10.1021/acs.jpcc.6b02227

    Article  CAS  Google Scholar 

  21. Zhao S, Larsson K (2019) First principle study of the attachment of graphene onto different terminated diamond (111) surfaces. Adv Condens Matter Phys. https://doi.org/10.1155/2019/9098256

  22. Wang X, Wang C, Shen X, Larsson K, Sun F (2019) DFT calculations of energetic stability and geometry of O-terminated B- and N-doped diamond (1 1 1)-1 × 1 surfaces. J Phys Condens Matter 31(26). https://doi.org/10.1088/1361-648X/ab152f

  23. Wang X, Song X, Wang H, Qiao Y, Larsson K, Sun F (2020) Selective control of oxidation resistance of diamond by dopings. ACS Appl Mater Interfaces 12(37):42302–42313. https://doi.org/10.1021/acsami.0c11215

    Article  CAS  PubMed  Google Scholar 

  24. Ivandini TA, Watanabe T, Matsui T, Ootani Y, Iizuka S, Toyoshima R, Kodama H, Kondoh H, Tateyama Y, Einaga Y (2019) Influence of surface orientation on electrochemical properties of boron-doped diamond. J Phys Chem C 123(9):5336–5344. https://doi.org/10.1021/acs.jpcc.8b10406

  25. Yamaguchi C, Natsui K, Iizuka S, Tateyama Y, Einaga Y (2019) Electrochemical properties of fluorinated boron-doped diamond electrodes: via fluorine-containing plasma treatment. Phys Chem Chem Phys 21(25):13788–13794. https://doi.org/10.1039/c8cp07402j

    Article  CAS  PubMed  Google Scholar 

  26. Kashiwada T, Watanabe T, Ootani Y, Tateyama Y, Einaga Y (2016) A study on electrolytic corrosion of boron-doped diamond electrodes when decomposing organic compounds. ACS Appl Mater Interfaces 8(42):28299–28305. https://doi.org/10.1021/acsami.5b11638

  27. Kasahara S, Natsui K, Watanabe T, Yokota Y, Kim Y, Iizuka S, Tateyama Y, Einaga Y (2017) Surface hydrogenation of boron-doped diamond electrodes by cathodic reduction. Anal Chem 89(21):11341–11347. https://doi.org/10.1021/acs.analchem.7b02129

  28. Le TA, Catalan FCI, Kim Y, Einaga Y, Tateyama Y (2021) Boron position-dependent surface reconstruction and electronic states of boron-doped diamond (111) surfaces: an Ab-Initio study. Phys Chem Chem Phys 23(29):15628–15634. https://doi.org/10.1039/d1cp00689d

  29. Lu C, Yang H, Xu J, Xu L, Chshiev M, Zhang S, Gu C (2017) Spontaneous formation of Graphene on diamond (111) driven by B-doping induced surface reconstruction. Carbon NY 115:388–393. https://doi.org/10.1016/j.carbon.2017.01.030

    Article  CAS  Google Scholar 

  30. Yao X, Feng Y, Hu Z, Zhang L, Wang EG (2013) Dimerization of boron dopant in diamond (100) epitaxy induced by strong pair correlation on the surface. J Phys Condens Matter 25(4). https://doi.org/10.1088/0953-8984/25/4/045011

  31. Shen W, Pan Y, Shen S, Li H, Zhang Y, Zhang G (2019) Electron affinity of boron-terminated diamond (001) surfaces: a density functional theory study. J Mater Chem C 7(31):9756–9765. https://doi.org/10.1039/c9tc02517k

    Article  CAS  Google Scholar 

  32. Jaimes R, Vazquez-Arenas J, González I, Galván M (2016) Delimiting the boron influence on the adsorptive properties of water and OH radicals on H-terminated boron doped diamond catalysts: a density functional theory analysis. Surf Sci 653:27–33. https://doi.org/10.1016/j.susc.2016.04.018

    Article  CAS  Google Scholar 

  33. Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. J Chem Phys 38(6):3098–3100. https://doi.org/10.1063/1.1749835

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  36. Nishihara S, Otani M (2017) Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory. Phys Rev B 96(11):115429. https://doi.org/10.1103/PhysRevB.96.115429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Tateyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tateyama, Y., Futera, Z., Ootani, Y., Iizuka, S., Anh, L.T. (2022). Computational Aspects of Surface and Interface of BDD Electrode. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_5

Download citation

Publish with us

Policies and ethics