Skip to main content
Log in

Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO -3 , H3O+, and OH ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O+ ion. However, for active ions like OH and HCO -3 , no dramatic change appears for the electronic structures of the adsorbed ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Landstrass and K. V. Ravi, Hydrogen passivation of electrically active defects in diamond, Appl. Phys. Lett. 55, 1391 (1989)

    Article  ADS  Google Scholar 

  2. B. Rezek, D. Shin, H. Watanabe, and C. E. Nebel, Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor, Sensor Actuat. B-Chem. 122, 596 (2007)

    Article  Google Scholar 

  3. C. Schreyvogel, M. Wolfer, H. Kato, M. Schreck, and C. E. Nebel, Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond, Sci. Rep. 4, 3634 (2014)

    Article  ADS  Google Scholar 

  4. H. Kawarada, H. Sasaki, and A. Sato, Scanning-tunnelingmicroscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure, Phys. Rev. B 52, 11351 (1995)

    Article  ADS  Google Scholar 

  5. K. Hayashi, S. Yamanaka, and H. Watanabe, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films, J. Appl. Phys. 81, 744 (1997)

    Article  ADS  Google Scholar 

  6. F. B. Liu, J. D. Wang, D. R. Chen, M. Zhao, and G. P. He, The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption, Acta Phys. Sin. 59, 6556 (2010) (in Chinese)

    Google Scholar 

  7. E. B. Lombardi, A. Mainwood, and K. Osuch, Interaction of hydrogen with boron, phosphorus, and sulfur in diamond, Phys. Rev. B 70, 205201 (2004)

    Article  ADS  Google Scholar 

  8. K. Bobrov, A. J. Mayne, A. Hoffman, and G. Dujardin, Atomic-scale desorption of hydrogen from hydrogenated diamond surfaces using the STM, Surf. Sci. 528, 138 (2003)

    Article  ADS  Google Scholar 

  9. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85, 3472 (2000)

    Article  ADS  Google Scholar 

  10. J. P. Goss, B. Hourahine, R. Jones, M. I. Heggie, and P. R. Briddon, p-type surface doping of diamond: a first-principles study, J. Phys.: Condens. Matter 13, 8973 (2001)

    ADS  Google Scholar 

  11. M. M. Hassan and K. Larsson, Effect of surface termination on diamond (100) surface electrochemistry, J. Phys. Chem. C 118, 22995 (2014)

    Article  Google Scholar 

  12. V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318, 1424 (2007)

    Article  ADS  Google Scholar 

  13. Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9, 200 (2014)

    Article  Google Scholar 

  14. Z. J. Ding, Y. Jiao, and S. Meng, Quantum simulation of molecular interaction and dynamics at surfaces, Front. Phys. 6, 294 (2011)

    Article  Google Scholar 

  15. J. Furthmüller, J. Hafner, and G. Kresse, Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces, Phys. Rev. B 53, 7334 (1996)

    Article  ADS  Google Scholar 

  16. K. Bobrov, A. Mayne, G. Comtet, G. Dujardin, L. Hellner, and A. Hoffman, Atomic-scale visualization and surface electronic structure of the hydrogenated diamond C (100)- (2×1): H surface, Phys. Rev. B 68, 195416 (2003)

    Article  ADS  Google Scholar 

  17. M. J. Rutter and J. Robertson, Ab initio calculation of electron affinities of diamond surfaces, Phys. Rev. B 57, 9241 (1998)

    Article  ADS  Google Scholar 

  18. F. Maier, J. Risten, and L. Ley, Electron affinity of plasmahydrogenated and chemically oxidized diamond (100) surfaces, Phys. Rev. B 64, 165411 (2001)

    Article  ADS  Google Scholar 

  19. Y. Takagi, K. Shiraishi, M. Kasu, and H. Sato, Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule, Surf. Sci. 609, 203 (2013)

    Article  ADS  Google Scholar 

  20. H. Sato and M. Kasu, Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption, Diamond Relat. Mater. 24, 99 (2012)

    Article  Google Scholar 

  21. K. G. Girija, J. Nuwad, and R. K. Vatsa, Hydrogenated diamond as room temperature H2S sensor, Diamond Relat. Mater. 40, 38 (2013)

    Article  ADS  Google Scholar 

  22. S. Beer, A. Helwig, G. Müller, J. Garrido, and M. Stutzmann, Water adsorbate mediated accumulation gas sensing at hydrogenated diamond surfaces, Sens. Actuat. B 181, 894 (2013)

    Article  Google Scholar 

  23. A. Helwig, G. Müller, J. A. Garrido, and M. Eickhoff, Gas sensing properties of hydrogen-terminated diamond, Sens. Actuat. B 133, 156 (2008)

    Article  Google Scholar 

  24. M. Kubovic, M. Kasu, and H. Kageshima, Electronic and surface properties of H-terminated diamond surface affected by NO2 gas, Appl. Phys. Lett. 96, 052101 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Bin Liu  (刘峰斌).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FB., Li, JL., Chen, WB. et al. Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study. Front. Phys. 11, 116804 (2016). https://doi.org/10.1007/s11467-015-0516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0516-7

Keywords

Navigation