Skip to main content
Log in

A DFT/TDDFT and QTAIM based investigation of the titanium-doped Boron-38 cluster

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Boron-based materials have been studied extensively due to their potential applications in hydrogen storage and sensing. Doping their surface with transition metals can improve their electronic properties and chemical reactivity. Here, we have studied the titanium-doped boron cluster containing 38 boron atoms using density functional theory, time-dependent density functional theory (TDDFT) and Bader’s quantum theory of atoms in molecule-based topology analysis. Hexagonal boron rings were found to be suitable for doping. Band gap remains semiconducting in nature. Non-covalent interaction method shows that steric effect is dominant in B38Ti4. Hole–electron distribution analysis of the TDDFT-based absorption spectra shows that peak wavelength redshifts upon doping and that hole is largely situated on boron atoms. Moreover, the excitons are found to tightly bound or Frenkel in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chopra S (2019) Mol Phys 117(1):71–78

    Article  CAS  Google Scholar 

  2. Chopra S, Plasser F (2017) Mol Phys 115(19):2469–2477

    Article  CAS  Google Scholar 

  3. Chopra S (2016) Mater Chem Phys 186:159–166

    Article  CAS  Google Scholar 

  4. Chopra S (2016) RSC Adv 6:89934–89939

    Article  CAS  Google Scholar 

  5. Chopra S (2015) ChemPhysChem 16(9):1948–1953

    Article  CAS  PubMed  Google Scholar 

  6. Zubarev DYu, Boldyrev AL (2007) J Comput Chem 28:251

    Article  CAS  PubMed  Google Scholar 

  7. Boustani I (1997) Phys Rev B 55:16426

    Article  CAS  Google Scholar 

  8. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Coord Chem Rev 250:2811

    Article  CAS  Google Scholar 

  9. Zhai HJ, Kiran B, Li J, Wang LS (2003) Nat Mater 2:827

    Article  CAS  PubMed  Google Scholar 

  10. Lu QL, Luo QQ, Li YD, Huanga SG (2015) Phys Chem Chem Phys 17:20897

    Article  CAS  PubMed  Google Scholar 

  11. Tai TB, Nguyen MT (2015) Chem Commun 51:7677

    Article  CAS  Google Scholar 

  12. Sun Q, Wang M, Li Z, Du A, Searles DJ (2014) J Phys Chem C 118:2170

    Article  CAS  Google Scholar 

  13. Anota EC, Villanueva MS, Toral DG, Carrillo LT, Martínez MRM (2016) Superlattice Microstruct 89:319–328

    Article  CAS  Google Scholar 

  14. Anota EC, Morales AE, Cocoletzi HH, López JGL (2015) Physica E 74:538–543

    Article  CAS  Google Scholar 

  15. Batista RJC (2010) Chem Phys Lett 488:209

    Article  CAS  Google Scholar 

  16. Mahdavifar Z, Poulad M (2014) Sens Actuators B Chem. 205:26

    Article  CAS  Google Scholar 

  17. Wang W, Zhang X, Li P, Sun Q, Li Z, Ren C, Guo C (2015) J Phys Chem A 119:796

    Article  CAS  PubMed  Google Scholar 

  18. Bahrami A, Yourdkhani S, Esrafili MD, Hadipour NL (2014) Sens Actuators B Chem 191:457

    Article  CAS  Google Scholar 

  19. Jin P, Hou Q, Tang C, Chen Z (2015) Theor Chem Acc 134:13

    Article  CAS  Google Scholar 

  20. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Nat Chem 6:727

    Article  CAS  PubMed  Google Scholar 

  21. Yan QB, Sheng XL, Zheng QR, Zhang LZ, Su G (2008) Phys Rev B 78:201401

    Article  CAS  Google Scholar 

  22. Wang L, Zhao J, Li F, Chen Z (2010) Chem Phys Lett 501:16–19

    Article  CAS  Google Scholar 

  23. Lv J, Wang Y, Zhua L, Ma Y (2014) Nanoscale 6:11692

    Article  CAS  PubMed  Google Scholar 

  24. He R, Zeng XC (2015) Chem Commun 51:3185

    Article  CAS  Google Scholar 

  25. Koponen L, Tunturivuori L, Puska MJ, Nieminen RM (2007) J Chem Phys 126:214306

    Article  PubMed  CAS  Google Scholar 

  26. Li S, Zhang Z, Long Z, Qin S (2017) Sci Rep 7:40081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chopra S (2018) J Mol Graph Model 84:90–95

    Article  CAS  PubMed  Google Scholar 

  28. Dong HD, Hou T, Lee ST, Li Y (2015) Sci Rep 5:9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin CP, Liu C, Li Y, Li L, Zhao Y (2018) Int J Quantum Chem 118:e25501

    Article  CAS  Google Scholar 

  30. Liu P, Zhang H, Cheng X, Tang Y (2016) Int J Hydrogen Energy 41(42):19123–19128

    Article  CAS  Google Scholar 

  31. Granovsky AA. Firefly version 8.1.0. http://classic.chem.msu.su/gran/firefly/index.html

  32. https://www.basissetexchange.org

  33. Adamo C, Barone V (1999) J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  34. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  35. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  36. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  37. Noorizadeh S, Shakerzadeh E (2010) Phys Chem Chem Phys 12:4742

    Article  CAS  PubMed  Google Scholar 

  38. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109(1):205–212

    Article  CAS  PubMed  Google Scholar 

  39. Fu R, Lu T, Chen F-W (2014) Acta Phys Chim Sin 30(4):628–639

    Article  CAS  Google Scholar 

  40. Johnson ER, Keinan S, Sánchez PM, García JC, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kittel C (2005) Introduction to solid state physics. Wiley, Hoboken

    Google Scholar 

  42. Lu T, Chen F (2012) J Theor Comput Chem 11:163

    Article  CAS  Google Scholar 

  43. Kraner S, Prampolini G, Cuniberti G (2017) J Phys Chem C 121(32):17088–17095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddheshwar Chopra.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, S., Lu, T. A DFT/TDDFT and QTAIM based investigation of the titanium-doped Boron-38 cluster. Theor Chem Acc 139, 136 (2020). https://doi.org/10.1007/s00214-020-02647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02647-3

Keywords

Navigation