Skip to main content

Trisodium 2-Hydroxypropane-1,2,3-Tricarboxylate Encapsulated Nanocontainer-Based Template-Free Electrochemical Synthesis of Multidimensional Copper/Copper Oxide Nanoparticles

  • Conference paper
  • First Online:
Recent Trends in Electrochemical Science and Technology

Abstract

The current paper reports the electrochemical synthesis and characterization of novel multidimensional copper/cuprous oxide (Cu2O) and cupric oxide (CuO) nanoparticles (NPs) with varying shapes and morphologies using trisodium citrate (TSC) as an additive at pH 13.11. This electrochemical one-pot synthetic route is facile and sustainable in which a rod of copper (Cu) was taken as a working electrode (anode) and platinum (Pt) as a reference electrode (cathode). Four differently shaped Cu2O NPs, viz. rod-shaped, spherical, block-type and leaf-shaped or feather-shaped, were obtained simply by controlling the pH of the solution at and 13.11 applied potential 6.7 V and temperature 373 K. Nanoparticles were characterized by using powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). This electrochemical approach of synthesis shows excellent stability in the synthesized NPs compared with chemical reduction method. These synthesized Cu/Cu2O/CuO nanoparticles were studied for antimicrobial activities against E.Coli, Staphylococus Aureus, and Sterptococus Pneumoniae. The range of minimum inhibitory concentration (MIC) values of these nanoparticles have been found from 150 µg/mL to 155 µg/mL for inhibiting the growth of above-mentioned bacteria. The authors hope that this method will be helpful in overcoming the challenging task of producing various shapes of Cu2O NPs in an economical and sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakshmanan M, Anumakonda VR, Gobi SK, Suchart S, Kumar J, Parameswaranpillai RS (2019) Preparation of cellulose/copper nanoparticles bionanocomposite films using a bioflocculant polymer as reducing agent for antibacterial and anticorrosion applications. Compos B Eng 175:107177. https://doi.org/10.1016/j.compositesb.2019.107177

    Article  CAS  Google Scholar 

  2. Jagaran K, Singh M (2021) Nanomedicine for COVID-19: Potential of copper nanoparticles. Biointerface Res Appl Chem 11(3):10716–10728. https://doi.org/10.33263/BRIAC113.1071610728

    Article  CAS  Google Scholar 

  3. Raha S, Mallick R, Basak S, Duttaroy A (2020) Is copper beneficial for COVID- 19 patients? Med. Hypotheses 142. https://doi.org/10.1016/j.mehy.2020.109814

  4. Smyrnioti M, Tampaxis C, Steriotis T, Ioannides T (2020) Study of CO2 adsorption on a commercial CuO/ZnO/Al2O3 catalyst. Catal Today 357:495–502. https://doi.org/10.1016/j.cattod.2019.07.024

    Article  CAS  Google Scholar 

  5. Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Vives C, Copéret C (2017) CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal–support interface. Angew Chem 56:2318. https://doi.org/10.1002/anie.201610166

    Article  CAS  Google Scholar 

  6. Bersani M, Gupta K, Mishra AK, Lanza R, Taylor SFR, Islam H, Hollingsworth N, Hardacre C, de Leeuw NH, Darr JA (2016) Combined EXAFS, XRD, DRIFTS, and DFT study of nano copper-based catalysts for CO2 hydrogenation. ACS Catal 6(9):5823. https://doi.org/10.1021/acscatal.6b01529

    Article  CAS  Google Scholar 

  7. Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R (2015) The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. Chem Cat Chem 7(7):1232. https://doi.org/10.1002/cctc.201590041

    Article  Google Scholar 

  8. Sagadevan S, Murugasen P (2015) Electrical properties of copper oxide nanoparticles. Nano Res 30:1. https://doi.org/10.4028/www.scientific.net/JNanoR.30.1

    Article  CAS  Google Scholar 

  9. Kang X, Mai Z, Zou X, Cai P (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363(1):143. https://doi.org/10.1016/j.ab.2007.01.003

    Article  CAS  Google Scholar 

  10. Roudriguze JA, Lui P, Hrbek J, Evans J, Parez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. Angew Chem Int Ed Engl 46(8):1329. https://doi.org/10.1002/anie.200603931

    Article  CAS  Google Scholar 

  11. Ali ZI, Ghazy OA, Meligi G, Saleh HH, Bekhit M (2018) Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv Polym Technol 201:21675. https://doi.org/10.1002/adv.21675

    Google Scholar 

  12. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2:025004. https://doi.org/10.1088/2043-6262/2/2/025004

    Article  CAS  Google Scholar 

  13. Ghorbani HR (2014) Biological and non-biological methods for fabrication of copper nanoparticles. Chem Eng Commun 202(11):1463–1467. https://doi.org/10.1080/00986445.2014.950732

    Article  CAS  Google Scholar 

  14. Zhong CJ, Mott D, Galkwoski J, Wang L, Luo J (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23(10):5740. https://doi.org/10.1021/la0635092

    Article  CAS  Google Scholar 

  15. Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31:1105–1109. https://doi.org/10.1007/s11814-014-0127-y

    Article  CAS  Google Scholar 

  16. Wu S-H, Chen DH, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165. https://doi.org/10.1016/j.jcis.2004.01.071

  17. Sisman I (2011) Template-assisted electrochemical synthesis of semiconductor nanowires. Chapter in book: Nanowires - Implementations and Applications, Source-InTech. https://doi.org/10.5772/20551

  18. Menke EJ, Xiang C, Thompson MA, Yang LC, Penner RM (2006) Lithographically patterned nanowire electrodeposition. Nat Mater 5(11):914. https://doi.org/10.1038/nmat1759

    Article  CAS  Google Scholar 

  19. Gupta J, Arya S, Singh A, Verma S, Sharma A, Singh B, Tomar A (2020) Template based electrochemical synthesis of copper (Cu) nanowires as CH2Cl2. Sensor Integr Ferroelectr 204:63. https://doi.org/10.1080/10584587.2019.1674990

    Article  CAS  Google Scholar 

  20. Wu HQ, Wei XW, Shao MW, Gu JS, Qu MZ (2002) Synthesis of copper oxide nanoparticles using carbon nanotube as templates. Chem Phys Lett 364(1):152. https://doi.org/10.1016/S0009-2614(02)01301-5

    Article  CAS  Google Scholar 

  21. Wahab R, Ahmad N, Alam M, Aldahmash AB, Abdulaziz A Al- Khedhairy (2016) Template free synthesis of copper oxide nanoparticles prepared via precipitation process. Asian J Chem 28(12):2622. doi:https://doi.org/10.14233/ajchem.2016.20029

  22. Mehdizadeh R, Hasanzadeh M, Sanati S, Saghatforoush LA (2012) Simple template-free solution route for the synthesis of Cu(OH)2 and CuO nanostructures and application for electrochemical determination three ß-blockers. J Exp Nanosci 9(8):763. https://doi.org/10.1080/17458080.2012.714479

    Article  CAS  Google Scholar 

  23. Chebil S, Monod MO, Fisicaro P (2014) Direct electrochemical synthesis and characterization of polypyrrole nano- and micro-snails. ElectrochimActa 123:527. https://doi.org/10.1016/j.electacta.2014.01.058

    Article  CAS  Google Scholar 

  24. Panigrahi S, Kundu S, Ghosh SK, Nath S, Praharaj S, Basu S, Pal T (2006) Selective one-pot synthesis of copper nanorods under surfactantless condition. Polyhedron 25(5):1263–1269. https://doi.org/10.1016/j.poly.2005.09.006

    Article  CAS  Google Scholar 

  25. Wang X, Xiaofeng W, Yuan L, Huang K, Feng S (2017) Ultra-low reflection CuO nanowire array in-situ grown on copper sheet. Mater Design 113:297–304. https://doi.org/10.1016/j.matdes.2016.10.029

    Article  CAS  Google Scholar 

  26. Kaur M, Muthe KP, Despande SK, Choudhury S, Sing JB, Verma N, Gupta SK, Yakhmi JV (2006) Growth and branching of CuO nanowires by thermal oxidation of copper. J Cryst Growth 289(2):670–675. https://doi.org/10.1016/j.jcrysgro.2005.11.111

    Article  CAS  Google Scholar 

  27. Zhu CL, Chen CN, Hao LY, Hu Y, Chen ZY (2004) Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon. J Cryst Growth 263(1–4):473–479. https://doi.org/10.1016/j.jcrysgro.2003.11.003

    Article  CAS  Google Scholar 

  28. Song X, Yu H, Sun S (2005) Single-crystalline CuO nanobelts fabricated by a convenient route. J Colloid Interf Sci 289:588. https://doi.org/10.1016/j.jcis.2005.03.074

    Article  CAS  Google Scholar 

  29. Yang Q, Yan PX, Chang JB, Feng JJ, Yue GH (2007) Growth of bicrystal CuO microsheets from aqueous solution. Phys Lett A 361:493. https://doi.org/10.1016/j.physleta.2006.07.056

    Article  CAS  Google Scholar 

  30. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887–3896. https://doi.org/10.1021/ja00063a006

    Article  CAS  Google Scholar 

  31. Galembeck A, Alves OL (1999) Planar heterostructures oxide/conducting polymer (CuO/polypyrrole and CeO/polypyrrole. Synth Met 102:1238. https://doi.org/10.1016/S0379-6779(98)01439-8

    Article  CAS  Google Scholar 

  32. Volanti DP, Keyson D, Cavalcante LS, Simoes AZ, Joya MR, Longo E, Varela JA, Pizani PS, Souza AG, Volanti P, Keyson D, Cavalcante LS, Souza AG (2008) Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloys Compd 459:537–542. https://doi.org/10.1016/j.jallcom.2007.05.023

    Article  CAS  Google Scholar 

  33. Saini K, Devnani H, Bhat M, Ingole PP (2017) Anisotropic plasmonic copper/copper oxide nanostructures by DC electrophoretic dissolution of copper in water for plasmonic sensing of glucose. J Electrochem Soc 164(13):B674–B680. https://doi.org/10.1149/2.1391713jes

    Article  CAS  Google Scholar 

  34. Saini K, Ingole PP, Bhatia SS, Rani N (2018) Rod-shaped copper (Cu, Cu2O) nano catalyst for the facile oxidation of methanol. Adv Mater Lett 9:36–41. https://doi.org/10.5185/amlett.2018.1714

    Article  CAS  Google Scholar 

  35. Fotouhi L, Rezaei M (2009) Electrochemical synthesis of copper sulfide nanoparticles. Microchim Acta 167:247. https://doi.org/10.1007/s00604-009-0234-3

    Article  CAS  Google Scholar 

  36. Gao T, Meng G, Wang Y, Sun S, Zhang L (2002) Electrochemical synthesis of copper nanowires. J Phys Condens Matter 14:355–363. https://doi.org/10.1088/0953-8984/14/3/306

    Article  CAS  Google Scholar 

  37. Pandey P, Merwyn S, Agarwal GS, Pant SC (2012) Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J Nanopart Res 14(1):1–13. https://doi.org/10.1007/s11051-011-0709-0

    Article  CAS  Google Scholar 

  38. Zhang QB, Hua YX (2014) Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride–urea deep eutectic solvent: nucleation and growth mechanism. Phys Chem Chem Phys 16:27088. https://doi.org/10.1007/s11051-011-0709-0

    Article  CAS  Google Scholar 

  39. Guan R, Hashimoto H, Kuo KH (1984) Electron-microscopic study of the structure of metastable oxides formed in the initial stage of copper oxidation. II Cu8O Acta Cryst B40:560–566. https://doi.org/10.1107/S010876818400269X

    Article  CAS  Google Scholar 

  40. Asbrink S, Waskowska A (1991) CuO: X-ray single-crystal structure determination at 196 K and room temperature. J Phys Condens Matter 3:8173. https://doi.org/10.1088/0953-8984/3/42/012

    Article  Google Scholar 

  41. Maria Starowicz M (2019) Electrochemical synthesis of copper oxide particles with controlled oxidation state, shape and size. Mater Res Express 6: 0850a3. 1088/2053–1591/ab239d

    Google Scholar 

  42. Mousali E, Zaanjanchi MA (2019) Electrochemical synthesis of copper (II) Oxides nanorods and their application in photocatalytic reactions. J Solid State Electrochem 23:925. https://doi.org/10.1007/s10008-019-04194-9

    Article  CAS  Google Scholar 

  43. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  44. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Masood ul Hasan M (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80. https://doi.org/10.1007/s13213-010-0015-6

    Article  CAS  Google Scholar 

  45. Mahmoodi S, Elmi A, Nezhadi HS (2018) Copper nanoparticles as antibacterial agents. Mol Pharm Org Process Res 6:1. https://doi.org/10.4172/2329-9053.1000140

    Article  Google Scholar 

  46. Bhavyasree PG, Xavier TS (2020) Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 6:e03323. https://doi.org/10.1016/j.heliyon.2020.e03323

    Article  CAS  Google Scholar 

  47. Garcia L (2010) Broth microdilution MIC Test, p 25–41. In Clinical Microbiology Procedures Handbook, 3rd edn. ASM Press, Washington, DC. https://doi.org/10.1128/9781555817435.ch5.2

  48. Muniyan A, Ravi K, Mohan U, Panchamoorthy R (2017) Characterization and in vitro antibacterial activity of saponin-conjugated silver nanoparticles against bacteria that cause burn wound infections. World J Microbiol Biotechnol 33:147. https://doi.org/10.1007/s11274-017-2309-3

    Article  CAS  Google Scholar 

  49. Nikam AV, Kashmir AA, Krishnamoorthy K, Kulkarni AA, Prasad BLV (2014) pH-dependent single-step rapid synthesis of CuO and Cu2O nanoparticles from the same precursor. Cryst Growth Des 14:4329. https://doi.org/10.1021/cg500394p

    Article  CAS  Google Scholar 

  50. Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalez-Elipe AR (2002) Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921. https://doi.org/10.1021/jp014618m

  51. Wang P, Ng YH, Amal R (2013) Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 5:2952. https://doi.org/10.1039/c3nr34012k

    Article  CAS  Google Scholar 

  52. Ji JY, Shih PH, Yang CC, Chan TS, Ma YR, Yun Wu SY (2009) Spontaneous self-organization of Cu2O/CuO core–shell nanowires from copper nanoparticles. Nanotechnology 21:045603. https://doi.org/10.1088/0957-4484/21/4/045603

    Article  CAS  Google Scholar 

  53. Ghijsen J, Tjeng LH, Van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B: Condens Matter 38:11322. https://doi.org/10.1103/PhysRevB.38.11322

    Article  CAS  Google Scholar 

  54. Gupta A, Ramen Jamatia R, Patil RA, Ma Y-R, Pal AK (2018) Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega 3:7288–7299. https://doi.org/10.1021/acsomega.8b00334

    Article  CAS  Google Scholar 

  55. Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z, Zhenquan Y (2019) Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim Acta 186:192. https://doi.org/10.1007/s00604-019-3263-6

    Article  CAS  Google Scholar 

  56. Padil VVT, Cernik M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898. https://doi.org/10.2147/IJN.S40599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Chemistry, Indian Institute of Technology, for providing the facility for PXRD. The authors also wish to thank the Department of Physics, MNIT, Jaipur, India, for XPS analysis. The authors also wish to thank Kusuma School of Biological Science, the Indian Institute of Technology for providing the facility for TEM and the University of Delhi (USIC), for providing the facility for SEM with EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalawati saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Electro Chemical Society of India

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, M. et al. (2022). Trisodium 2-Hydroxypropane-1,2,3-Tricarboxylate Encapsulated Nanocontainer-Based Template-Free Electrochemical Synthesis of Multidimensional Copper/Copper Oxide Nanoparticles. In: Mudali, U.K., Aruna, S.T., Nagaswarupa, H.P., Rangappa, D. (eds) Recent Trends in Electrochemical Science and Technology. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-16-7554-6_18

Download citation

Publish with us

Policies and ethics