Skip to main content

Advertisement

Log in

Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Copper (II) oxide multi-armed nanoparticles composed of 500–1000 nm long radiating nanospicules with 100–200 nm width near the base and 50–100 nm width at the tapered ends and ~25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 °C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, staphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 μg/mL nano CuO killed 3 × 108 CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 × 106 CFU/mL E. coli were killed by 100 and 10 μg/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan O, Azimirad R, Safa S, Hasani E (2011) CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J Mater Chem 21:9634–9640

    Google Scholar 

  • Ayala-Núñez NV, Villegas HHL, Turrent LDCI, Padilla CR (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnol 5:2–9

    Article  Google Scholar 

  • Chan HYH, Takoudis CG, Weaver MJ (1999) Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced Raman spectroscopy. J Phys Chem B 103:357–365

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Cudennec Y, Lecerf Andre (2003) The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci 5:1471–1474

    Article  CAS  Google Scholar 

  • Gao F, Pang H, Xu S, Lu Q (2009) Copper based nanostructures: promising antibacterial agents and photocatalysts. Chem Commun 24:3571–3573

    Article  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) nanoparticles: comparative studies with micron sized particles, leachate and metal salts. ACS Nano 5:7214–7225

    Article  CAS  Google Scholar 

  • Haggstrom JA, Klabunde KJ, Marchin GL (2010) Biocidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale 2:399–405

    Article  CAS  Google Scholar 

  • Hamilton JC, Farmer JC, Anderson RJ (1986) In situ Raman spectroscopy of anodic films formed on Cu & Ag in NaOH solution. J Electrochem Soc 133:739–745

    Article  CAS  Google Scholar 

  • Hanson A (2006) A companion to the Roman Empire. In: Potter DS (ed) Blackwell Publishing Ltd, Malden, pp 492–523

  • Kawahara K, Tsuruda K, Morishita M, Uhida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16:452–455

    Article  CAS  Google Scholar 

  • Khamsi R (2005) Brass jugs polish off disease, developing world urged to ditch plastic for traditional pitchers. Nature. doi:10.1038/news050404-14

  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infect Dis 10:97–602

    Google Scholar 

  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3:185–193

    Article  CAS  Google Scholar 

  • Marcel T, Geesje DT, Maarten-Jan C (2006) Trojan Horse hypothesis: inhaled airborne particles, lipid bullets and atherogenesis. J Am Med Assoc 295:2354–2355

    Google Scholar 

  • Noyce J, Michels HT, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic methicillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297

    Article  CAS  Google Scholar 

  • Petrus EM, Tinakumari S, Chai LC, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int Food Res J 18:55–66

    Google Scholar 

  • Rajendran R, Balakumar C, Mohammed Ahammed HA, Jayakumar S, Vaideki K, Rajesh EM (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Tech 2:202–208

    Google Scholar 

  • Reddy VP, Kumar AV, Swapna K, Rao KR (2009) Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halide under ligand free condition. Org Lett 11:951–953

    Article  CAS  Google Scholar 

  • Reetz MT, Helbig W (1994) Size selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Ag 33:587–590

    Article  CAS  Google Scholar 

  • Rhen DS, Ngoc HV, Burkhart M (2010) Functional CuO nanowire bundle growth on ITO from a novel spin coatable seed layer and electrochemical route. J Korean Phys Soc 56:1504–1508

    Article  CAS  Google Scholar 

  • Rodryguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  Google Scholar 

  • Sharan R, Chhibber S, Attri S, Reed RS (2010) Inactivation and injury of Escherichia coli in a copper water storage vessel: effects of temperature and pH. Antonie Van Leeuwenhoek 97:91–97

    Article  CAS  Google Scholar 

  • Singh DP, Neti NR, Sinha ASK, Srivastava ON (2007) Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J Phys Chem C 111:1638–1645

    Article  CAS  Google Scholar 

  • Stankovic ZD, Rajcic –VujasinovicVukovic M, Krcobic S, Wragg AA (1998) Electrochemical synthesis of cupric oxide powder Part I: influence of pH. J App Electrochem 28:1405–1411

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Stypia B, Banas J, Starowicz M, Krawiec H, Bernasic A, Janas A (2006) Production of nanoparticles of copper compounds by anodic dissolution of copper in organic solvents. J App Electrochem 36:1407–1414

    Article  Google Scholar 

  • Wilks SA, Michels HT, Keevil CW (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105:445–454

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. App Environ Microbiol 77:2325–2331

    Article  CAS  Google Scholar 

  • Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J (2005) Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process. J Phys Chem B 109:14011–14016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. R. Vijayaraghvan, Director, DRDE, Gwalior, for providing facilities and support to carry out this study. We are grateful to Dr R. S. Chuahan (DRDE) and Prof. Roger Mortimer (Loughborough University) for fruitful discussion and suggestions and Mr. Jitendra Kushwah for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, P., Merwyn, S., Agarwal, G.S. et al. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J Nanopart Res 14, 709 (2012). https://doi.org/10.1007/s11051-011-0709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0709-0

Keywords

Navigation