Skip to main content

A Case Study of Shape Optimization Using Grasshopper Optimization Algorithm

  • Conference paper
  • First Online:
Recent Advances in Intelligent Manufacturing and Service Systems

Abstract

Structural optimization is a popular topic in today’s engineering and industry to reduce costs and obtain more ideal designs. In the structural optimization problem, the lightest design under conditions is investigated. Increasing studies in recent years have proven the success of metaheuristic optimization algorithms in structural optimization problems. Unlike the traditional method, metaheuristic methods use stochastic methods and do not need derivative information of the problem. This makes them more flexible and easy to use. In this study, a solid part’s shape optimization is performed by using the Grasshopper Optimization Algorithm (GOA). The design values and results found by the algorithm are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildiz BS, Yildiz AR (2018) Comparison of grey Wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater/Mater Test 60(3):311–315. https://doi.org/10.3139/120.111153

    Article  Google Scholar 

  2. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333. https://doi.org/10.1016/j.engappai.2012.05.014

    Article  Google Scholar 

  3. Hypermesh. Altair Engineering, Inc., Troy MI, United States, [Online]. Available: https://altairhyperworks.com/product/HyperMesh

  4. ANSYS Inc (2021) Ansys optiSLang: design optimization. https://www.ansys.com/products/platform/ansys-optislang (accessed Mar. 05)

  5. Altair Inspire (2021) https://www.altair.com/inspire/ (accessed Mar. 05)

  6. Gray JS, Hwang JT, Martins JRRA, Moore KT, Naylor BA (2019) OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization. Struct Multidiscip Optim 59(4):1075–1104. https://doi.org/10.1007/s00158-019-02211-z

    Article  MathSciNet  Google Scholar 

  7. M. M. D. O. Laboratory (2021) Welcome to OpenLSTO. http://m2do.ucsd.edu/software/ (accessed Mar. 05)

  8. De Leon-Aldaco SE, Calleja H, Alquicira JA (2015) Metaheuristic optimization methods applied to power converters: a review. IEEE Trans Power Electron 30(12):6791–6803. https://doi.org/10.1109/TPEL.2015.2397311

  9. Erdal F, Doğan E, Saka MP (2011) Optimum design of cellular beams using harmony search and particle swarm optimizers. J Constr Steel Res 67(2):237–247. https://doi.org/10.1016/j.jcsr.2010.07.014

    Article  Google Scholar 

  10. Tejani GG, Savsani VJ, Patel VK, Savsani PV (2018) Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. J Comput Des Eng 5(2):198–214. https://doi.org/10.1016/j.jcde.2017.10.001

    Article  Google Scholar 

  11. Dhiman G et al (2021) EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern 12(2):571–596. https://doi.org/10.1007/s13042-020-01189-1

    Article  Google Scholar 

  12. Ficarella E, Lamberti L, Degertekin SO (2021) Comparison of three novel hybrid metaheuristic algorithms for structural optimization problems. Comput Struct 244:106395. https://doi.org/10.1016/j.compstruc.2020.106395.

  13. Biswas K, Vasant P, Vintaned JAG, Watada J, Roy A, Sokkalingam R (2021) A hybrid metaheuristic algorithm for truss structure domain’s optimization problem. Theoretical, modelling and numerical simulations toward industry 4.0. Springer, pp 21–34

    Google Scholar 

  14. Karagöz S, Yıldız AR (2017) A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects. Int J Veh Des 73(1/2/3):179. https://doi.org/10.1504/IJVD.2017.082593

  15. Yıldız BS, Yıldız AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5):425–429. https://doi.org/10.3139/120.111024

    Article  Google Scholar 

  16. Pholdee N, Bureerat S, Yıldız AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1/2/3):20. https://doi.org/10.1504/IJVD.2017.082578

  17. Yıldız BS (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Veh Des 73(1/2/3):208. https://doi.org/10.1504/IJVD.2017.082603

  18. Gholizadeh S, Ebadijalal M (2018) Performance based discrete topology optimization of steel braced frames by a new metaheuristic. Adv Eng Softw 123:77–92. https://doi.org/10.1016/j.advengsoft.2018.06.002

  19. Panagant N, Pholdee N, Wansasueb K, Bureerat S, Yildiz AR, Sait SM (2019) Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame. Int J Veh Des 80(2–4):176–208. https://doi.org/10.1504/IJVD.2019.109863

    Article  Google Scholar 

  20. Yıldız AR, Erdaş MU (2021) A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems. Mater Test 63(2):157–162. https://doi.org/10.1515/mt-2020-0022

    Article  Google Scholar 

  21. Yildiz AR (2019) A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. Int J Adv Manuf Technol 105(12):5091–5104. https://doi.org/10.1007/s00170-019-04532-1

    Article  Google Scholar 

  22. Kurtuluş E, Yıldız AR, Sait SM, Bureerat S (2020) A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails. Mater Test 62(3):251–260. https://doi.org/10.3139/120.111478

    Article  Google Scholar 

  23. Yıldız BS, Pholdee N, Panagant N, Bureerat S, Yildiz AR, Sait SM (2021) A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems. Eng Comput. https://doi.org/10.1007/s00366-020-01268-5

    Article  Google Scholar 

  24. Özkaya H, Yıldız M, Yıldız AR, Bureerat S, Yıldız BS, Sait SM (2020) The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components. Mater Test 62(5):492–496. https://doi.org/10.3139/120.111509

    Article  Google Scholar 

  25. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst. https://doi.org/10.1111/exsy.12666

    Article  Google Scholar 

  26. Abderazek H, Yildiz AR, Sait SM (2019) Mechanical engineering design optimisation using novel adaptive differential evolution algorithm. Int J Veh Des 80(2–4):285–329. https://doi.org/10.1504/IJVD.2019.109873

    Article  Google Scholar 

  27. Abderazek H, Sait SM, Yildiz AR (2019) Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics. Int J Veh Des 80(2–4):121–136. https://doi.org/10.1504/IJVD.2019.109862

    Article  Google Scholar 

  28. Karaduman A, Yıldız BS, Yıldız AR (2019) Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry. Int J Veh Des 80(2–4):330–345. https://doi.org/10.1504/IJVD.2019.109875

    Article  Google Scholar 

  29. Sarangkum R et al (2019) Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation. Int J Veh Des 80(2–4):162–175. https://doi.org/10.1504/IJVD.2019.109864

    Article  Google Scholar 

  30. Panagant N, Pholdee N, Bureerat S, Kaen K, Yıldız AR, Sait SM (2021) Seagull optimization algorithm for solving real-world design optimization problems. Mater Test 62(6):640–644. https://doi.org/10.1515/mt-2020-620615

    Article  Google Scholar 

  31. Yıldız BS (2020) The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater Test 62(4):383–388. https://doi.org/10.1515/mt-2020-620409

    Article  Google Scholar 

  32. Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100:105783. https://doi.org/10.1016/j.ast.2020.105783.

  33. Aye CM, Pholdee N, Yildiz AR, Bureerat S, Sait SM (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int J Veh Des 80(2–4):223–240. https://doi.org/10.1504/IJVD.2019.109866

    Article  Google Scholar 

  34. Panagant N, Pholdee N, Bureerat S, Yildiz AR, Mirjalili S (2021) A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems. Arch Comput Methods Eng No. 0123456789. https://doi.org/10.1007/s11831-021-09531-8

  35. Yıldız BS, Pholdee N, Bureerat S, Yıldız AR, Sait SM (2020) Sine-cosine optimization algorithm for the conceptual design of automobile components. Mater/Mater Test 62(7):744–748. https://doi.org/10.3139/120.111541

    Article  Google Scholar 

  36. Yıldız BS, Yıldız AR, Pholdee N, Bureerat S, Sait SM, Patel V (2020) The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components. Mater/Mater Test 62(3):261–264. https://doi.org/10.3139/120.111479

    Article  Google Scholar 

  37. Yıldız BS (2020) Optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology. Mater/Mater Test 62(4):371–377. https://doi.org/10.3139/120.111494

    Article  Google Scholar 

  38. Yıldız BS (2020) The mine blast algorithm for the structural optimization of electrical vehicle components. Mater Test 62(5):497–501. https://doi.org/10.3139/120.111511

    Article  Google Scholar 

  39. Yıldız BS, Yıldız AR, Albak Eİ, Abderazek H, Sait SM, Bureerat S (2020) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Test 62(4):365–370. https://doi.org/10.3139/120.111492

    Article  Google Scholar 

  40. Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2020) A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09443-z

    Article  Google Scholar 

  41. Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. Struct Multidiscip Optim 25(2):99–116. https://doi.org/10.1007/s00158-002-0277-0

    Article  Google Scholar 

  42. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380. https://doi.org/10.1115/1.2429697

    Article  Google Scholar 

  43. Zhou M, Pagaldipti N, Thomas HL, Shyy YK (2004) An integrated approach to topology, sizing, and shape optimization. Struct Multidiscip Optim 26(5):308–317. https://doi.org/10.1007/s00158-003-0351-2

    Article  Google Scholar 

  44. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faik Fatih Korkmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korkmaz, F., Subran, M., Yıldız, A. (2022). A Case Study of Shape Optimization Using Grasshopper Optimization Algorithm. In: Sen, Z., Oztemel, E., Erden, C. (eds) Recent Advances in Intelligent Manufacturing and Service Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-7164-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7164-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7163-0

  • Online ISBN: 978-981-16-7164-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics