Skip to main content
Log in

An integrated approach to topology, sizing, and shape optimization

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization has become very popular in industrial applications, and most FEM codes have implemented certain capabilities of topology optimization. However, most codes do not allow simultaneous treatment of sizing and shape optimization during the topology optimization phase. This poses a limitation on the design space and therefore prevents finding possible better designs since the interaction of sizing and shape variables with topology modification is excluded. In this paper, an integrated approach is developed to provide the user with the freedom of combining sizing, shape, and topology optimization in a single process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.; Kohn, R.V. 1993: Topology optimization and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.) Topology design of structures, 207–218

  2. Altair HyperMesh 2000: Users manual. Altair Engineering, Inc., Troy, MI

  3. Altair OptiStruct 1999: Users manual. Altair Engineering, Inc., Troy, MI

  4. ANSYS 1999: Users manual. ANSYS, Inc., Houston, PA

  5. Barthelemy, J.M.; Haftka, R.T. 1993: Recent advances in approximation concepts for optimum structural design. Struct. Optim. 12, 129–144

    Google Scholar 

  6. Bendsøe, M. 1989: Optimum shape design as a material distribution problem. Struct. Optim. 1, 193–202

    Google Scholar 

  7. Bendsøe, M. 1995: Optimization of structural topology, shape and material. Berlin: Springer-Verlag

  8. Bendsøe, M.; Kikuchi, N. 1988: Generating optimal topologies in optimal design using a homogenization method. Comp. Meth. Appl. Mech. Engrg. 71, 197–224

    Google Scholar 

  9. Canfield, R.A. 1990: High quality approximation of eigenvalues in structural optimization. AIAA J. 28, 1143–1149

    Google Scholar 

  10. Chang, K.H.; Choi, K.K. 1992: A geometry-based parameterization method for shape design of elastic solids. Mech. Struct. & Mach. 20, 215–252

    Google Scholar 

  11. Ding, Y. 1986: Shape optimization of structures – a literature survey. Comp. Struct. 24, 985–1004

    Google Scholar 

  12. Fluery, C. 1989: CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim. 1, 81–89

    Google Scholar 

  13. Fleury, C.; Braibant, V. 1986: Structural optimization: a new dual method using mixed variables. Int. J. Num. Meth. Engrg. 23, 409–428

    Google Scholar 

  14. GENESIS 1999: Users manual. VMA Engineering, Inc., Colorado Springs, CO

  15. Haftka, R.T.; Adelman, H.M. 1993: Sensitivity of discrete systems. In: Rozvany, G.I.N. (ed.) Optimization of Large Structural Systems, Dordrecht: Kluwer Academic Publishers, pp. 289–212

  16. Haftka, R.T.; Grandhi, R.V. 1986: Structural shape optimization – a survey. Comp. Meth. Appl. Mech. Engrg. 57, 91–106

    Google Scholar 

  17. Haftka, R.T.; Gürdal, Z. 1992: Elements of structural optimization. Dordrecht: Kluwer Acad. Publ.

  18. Haftka, R.T.; Starnes, J.H. 1976: Application of a quadratic extended interior penalty function for structural optimization. AIAA J. 14, 718–724

    Google Scholar 

  19. Kikuchi, N.; Chung, K.Y.; Torigaki, T.; Taylor, E. 1986: Adaptive finite element methods for shape optimization. Comp. Meth. Appl. Mech. Engrg. 57, 67–89

    Google Scholar 

  20. Kirsch, U. 1993: Structural optimization: fundamentals and applications. Berlin: Springer-Verlag

  21. MSC/NASTRAN 1999: Users manual. MSC Software, Inc., Los Angeles, CA

  22. Olhoff, N.; Rasmussen, J.; Lund, E. 1993: Method of “exact” numerical differentiation for error elimination in finite element based semi-analytical sensitivity analysis. Mech. Struct. Mach. 21, 1–66

    Google Scholar 

  23. Olhoff, N.; Rønholt, E.; Scheel, J. 1998: Topology optimization of plate-like structures using 3-D elasticity and optimum 3-D microstructures. Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, 1853–1863

  24. Rozvany, G.I.N.; Bendsøe, M.; Kirsch, U. 1995: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119

    Google Scholar 

  25. Schleupen, A.; Maute, K.; Ramm, E. 1995: Adaptive FE-procedures in shape optimization. Struct. Optim. 19, 282–302

    Google Scholar 

  26. Schmit, L.A. 1981: Structural synthesis – its genesis and development. AIAA J. 19, 1249–1263

    Google Scholar 

  27. Schmit, L.A.; Farshi, B. 1974: Some approximation concepts for structural synthesis. AIAA J., 12, 692–699

    Google Scholar 

  28. Schramm, U.; Pilkey, W.D. 1993: The coupling of geometric descriptions and finite elements using NURBs – a study in shape optimization. Finite Elements in Analysis and Design, 15, 11–34

    Google Scholar 

  29. Sigmund, O.; Petersson, J. 1998: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75

    Google Scholar 

  30. Thomas, H.L. 1996: Optimization of structures designed using nonlinear FEM analysis. Proc. 7th AIAA/ASME/ASCE/AHS/ASC 37 th Structures, Structural Dynamics and materials conference, April, Salt Lake City, UT

  31. Vanderplaats, G.N. 1973: CONMIN – a Fortran program for constrained function minimization: user’s manual. NASA TM X-62282

  32. Vanderplaats, G.N. 1982: Structural optimization – past, present and future. AIAA J. 20, 992–1000

    Google Scholar 

  33. Vanderplaats, G.N.; Salajegheh, E. 1989: A new approximation method for stress constraints in structural synthesis. AIAA J. 27, 252–358

    Google Scholar 

  34. Vanderplaats, G.N.; Thomas, H.L. 1993: An improved approximation for stress constraints in plate structures. Struct. Optim. 6, 1–6

    Google Scholar 

  35. Voth, B. 1999: Using automatically generated shape variables to optimize stamped plates. Technical Memorandum, Altair Engineering, Inc., Troy, MI

  36. Yang, R.J.; Lee, A.; McGeen, D.T. 1992: Application of basis function concept to practical shape optimization problems. Struct. Optim. 5, 55–63

    Google Scholar 

  37. Zhou, M. 1989: Geometrical optimization of trusses by a two-level approximation concept. Struct. Optim. 1, 235–240

    Google Scholar 

  38. Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comp. Meth. Appl. Mech. Engrg. 89, 197–224

    Google Scholar 

  39. Zhou, M.; Shyy, Y.K.; Thomas, H.L. 1999: Checkerboard and Minimum Member Size Control in Topology Optimization. Struct. Multidisc. Optim. 21, 152–158

    Google Scholar 

  40. Zhou, M.; Thomas, H.L. 1993: Alternative approximation for stresses in plate structures. AIAA J. 31, 2169–2174

    Google Scholar 

  41. Zhou, M.; Xia, R.W. 1990: Two-level approximation concept in structural synthesis. Int. J. Num. Meth. Engrg. 29, 1681–1699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Pagaldipti, N., Thomas, H. et al. An integrated approach to topology, sizing, and shape optimization. Struct Multidisc Optim 26, 308–317 (2004). https://doi.org/10.1007/s00158-003-0351-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0351-2

Keywords

Navigation