Skip to main content

Crop Plants, Abiotic Stress, Reactive Oxygen Species Production, Signaling, and Their Consequences

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

The utmost normally abiotic stress–triggered expression in plants involves the transcription factors activating stress responsive genes, thereby causing the formation of reactive oxygen species (ROS). ROS signaling pathways along with plant hormones act as key mediators culminating into activation of downstream metabolic routes and alterations at the physiological levels according to the altered environment. A critical amount of ROS is needed by plant systems for normal functioning of important physiological mechanisms. Furthermore, if exist at a higher than critical level, ROS may be lethal and devastating for the entire physiological response. Consequently, plant systems retain a threshold level of ROS by inherent antioxidant defense mechanisms comprising of enzymatic and nonenzymatic components. Usually, surplus ROS are neutralized by these antioxidants, but under stress, ROS formation is elevated, and antioxidant activity is lowered. Overall, the present chapter provides an overview on the ROS signaling together with their production, impact, and mitigation through antioxidant mechanisms in crops under adverse environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51:157–160

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Potassium improves antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 254:1471–1486

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Tittal M, Mir RA, Agarwal RM (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 254(5):1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Khan H, Shahab U, Rehman S, Rafi Z, Khan MY, Ansari A, Siddiqui Z, Ashraf JM, Abdullah SM, Habib S (2017) Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine. Front Biosci 9:71–87

    Article  Google Scholar 

  • Ahmadi FI, Karimi K, Struik PC (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S Afr J Bot 115:5–11

    Article  CAS  Google Scholar 

  • Alizadeh F, Bolhassani A, Khavari A, Bathaie SZ, Naji T, Bidgoli SA (2014) Retinoids and their biological effects against cancer. Int Immunopharmacol 18:43–49

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Ansari MI, Singh AK (2021) Nanobiotechnology: mitigation of abiotic stress in plants, 1st edn. Springer, Cham, pp 1–593

    Book  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnie-Gauvin K, Costantini D, Cooke SJ, Willmore WG (2017) A comparative and evolutionary approach to oxidative stress in fish: a review. Fish Fish 18:928–994

    Article  Google Scholar 

  • Boguszewska D, ZagdaĹ„ska B (2012) ROS as signalling molecules and enzymes of plant response to unfavorable environmental conditions. In: Lushchak V, Semchyshyn HM (eds) Oxidative stress-molecular mechanisms and biological effects. IntechOpen, Rijeka, pp 342–357

    Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  • Cha JY, Kim JY, Jung IJ, Kim MR, Melencion A, Alam SS, Yun DJ, Lee SY, Kim MG, Kim WY (2014) NADPH-dependent thioredoxin reductase a (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiol Biochem 80:184–191

    Article  CAS  PubMed  Google Scholar 

  • Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol 67:25–53

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Sun H, Yang H, Wang X, Su Z, Chen F, Wei W (2017) Over-expression of dehydroascorbate reductase enhances oxidative stress tolerance in tobacco. Electron J Biotechnol 25:1–8

    Article  Google Scholar 

  • Chen L, Hu JY, Wang SQ (2012) The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol 67:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agrobiol 15:45–57

    CAS  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 154:1010–1016

    Article  CAS  Google Scholar 

  • Ferretti G, Bacchetti T, Masciangelo S, Saturni L (2012) Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients 4:243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signalling. J Mol Cell Cardiol 73:2–9

    Article  CAS  PubMed  Google Scholar 

  • Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signalling. Circ Res 122:877–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH (2017) Ascorbic acid. In: Foyer CH (ed) Antioxidants in higher plants. CRC Press, New York, pp 31–58

    Chapter  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  Google Scholar 

  • Gengmao Z, Shihui L, Xing S, Yizhou W, Zipan C (2015) The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 5:12696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    Article  PubMed Central  CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Brazilian J Bot 37:217–227

    Article  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1996) Role of Ced-3/I family proteases in stuarosporine-induced programmed cell death. J Cell Biol 133:1041–1051

    Article  CAS  Google Scholar 

  • Jain P, Pandey B, Singh P, Singh R, Singh SP, Sonkar S, Gupta R, Rathore SS, Singh AK (2021) Plant performance and defensive role of glycine betaine under environmental stress. In: Husen A (ed) Plant performance under environmental stress. Springer, pp 225–248

    Chapter  Google Scholar 

  • Jiang C, Zheng Q, Liu Z, Xu W, Liu L, Zhao G, Long X (2012) Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus euramericana “Neva”). Trees 26:685–694

    Article  CAS  Google Scholar 

  • Khan MLR, Khan NA (eds) (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, New York

    Google Scholar 

  • Khan NA, Samiullah SS, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agro Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo S, Xu Y, Meng Q, Li G, Yang X (2014) Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plant 150:63–75

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J (2018) H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biol 18:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes ongrowth and antioxidative enzymes level in water hyacinths Eichhornia crassipes (Mart). Bot Stud 55:54–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallahi T, Saharkhiz MJ, Javanmardi J (2014) Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol Sin 38:351–355

    Article  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naderi R, Valizadeh M, Toorchi M, Shakiba MR (2014) Antioxidant enzyme changes in response to osmotic stress in wheat (Triticum aestivum L.) seedling. Acta Biologica Szegediensis 58:95–101

    Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 115:126–140

    Article  CAS  PubMed  Google Scholar 

  • Porwal P, Sonkar S, Singh AK (2021) Plant stress enzymes nanobiotechnology. In: Al-Khayri JM, Ansari MI, Singh AK (eds) Nanobiotechnology: mitigation of abiotic stress in plants. Springer, pp 327–348

    Chapter  Google Scholar 

  • Quintero JM, Fournier JM, Benlloch M (2007) Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. J Plant Physiol 164:60–67

    Article  CAS  PubMed  Google Scholar 

  • Rogers H, Munne-Bosch S (2016) Production and scavenging of reactive oxygen species and redox signalling during leaf and flower senescence: similar but different. Plant Physiol 171:1560–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JR, Caverzan A, Chavarria G (2019) Water deficit stress, ROS involvement, and plant performance. Arch Agron Soil Sci 65(8):1160–1181

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2016) Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press, New York, pp 109–158

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) Carotenoids and apocarotenoids in cellular signalling related to cancer: a review. Mol Nutr Food Res 56:259–269

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZS (2013) Effects of double stress on antioxidant enzyme activity in Vigna radiata (L.) Wilczek. Acta Bot Croat 72:145–156

    Article  CAS  Google Scholar 

  • Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2013) Proteomics analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties. Plant and Soil 366:647–358

    Article  CAS  Google Scholar 

  • Sonkar S, Pandey B, Rathore SS, Sharm L, Singh AK (2021a) Applications of nanobiotechnology in overcoming temperature stress. In: Al-Khayri JM, Ansari MI, Singh AK (eds) Nanobiotechnology: mitigation of abiotic stress in plants. Springer, pp 417–435

    Chapter  Google Scholar 

  • Sonkar S, Sharma L, Singh RK, Pandey B, Rathore SS, Singh AK, Porwal P, Singh SP (2021b) Plant stress hormones nanobiotechnology. In: Al-Khayri JM, Ansari MI, Singh AK (eds) Nanobiotechnology: mitigation of abiotic stress in plants. Springer, pp 349–373

    Chapter  Google Scholar 

  • Sonkar S, Singh AK, Husen A (2021c) Functions of hydrogen sulfide in plant regulation and response to abiotic stress. In: Husen A (ed) Plant performance under environmental stress. Springer, pp 329–355

    Chapter  Google Scholar 

  • Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152

    Article  CAS  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012a) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yang J, Yi J (2012b) Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid Redox Signal 16:649–657

    Article  PubMed  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P. et al. (2022). Crop Plants, Abiotic Stress, Reactive Oxygen Species Production, Signaling, and Their Consequences. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_7

Download citation

Publish with us

Policies and ethics