Skip to main content

Bioactive Compost for Managing Plant Growth Under Stress Environment

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

With the progression of global human population, degradation of environment, and climate change, agricultural productivity is declining, threatening the world food security. To safeguard the need of present as well as future generation to access adequate amount and quality of food, focusing toward agricultural practices that ensure food security while maintaining harmony with environment is imperative. Application of organic compost and beneficial microorganisms has gained worldwide attention for improving plant growth and productivity under normal and stressed environment. Organic compost is regarded as natural soil conditioner and fertilizers due to their ability to improve soil structure and chemical properties such as soil pH, water holding capacity, organic carbon content, nutrient level, etc. Similarly, the beneficial microorganisms promote development and yield of associated plants even under stress conditions by stimulating root elongation through production of phytohormones; facilitating absorption of essential and limited nutrients; reducing growth of pathogens; fortifying plant defense mechanism; improving antioxidant, osmolyte, and other enzymes activity in plants; etc. Thus, actively applying compost rich in beneficial microorganisms, i.e., bioactive compost, or manipulating microbial population of poor compost through microbial enrichment can help plants to combat and sustain growth under influence of biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, De-Leij FA, Lynch JM (2007) Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54(2):306–313

    Article  CAS  PubMed  Google Scholar 

  • Affokpon A, Coyne DL, Htay CC, Agbèdè RD, Lawouin L, Coosemans J (2011) Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Biochem 43(3):600–608

    Article  CAS  Google Scholar 

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25(1):1–21

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Mehmood S, Akhter K, Tahir M, Saeed MF, Hussain MB, Hussain S (2018) Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicol Environ Saf 148:805–812

    Article  CAS  PubMed  Google Scholar 

  • Akladious SA, Abbas SM (2014) Application of Trichoderma harzianum T22 as a biofertilizer potential in maize growth. J Plant Nutr 37(1):30–49

    Article  CAS  Google Scholar 

  • Ali M, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    Article  CAS  PubMed Central  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133(4):682–691

    Article  CAS  PubMed  Google Scholar 

  • Anli M, Symanczik S, El Abbassi A, Ait-El-Mokhtar M, Boutasknit A, Ben-Laouane R, Toubali S, Baslam M, Mader P, Hafidi M, Meddich A (2020) Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss’. Plant Biosyst 5:1–9

    Google Scholar 

  • Ansari FA, Jabeen M, Ahmad I (2021) Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. Int J Environ Sci Technol 5:1–16

    Google Scholar 

  • Ansari MI, Lin TP (2010) Molecular analysis of dehydration in plants. Int Res J Plant Sci 1(2):21–25

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38:1385

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Berners-Lee M, Kennelly C, Watson R, Hewitt CN, Kapuscinski AR, Locke KA, Peters CJ (2018) Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem: Sci Anth 2018:6

    Google Scholar 

  • Bhadauria BP, Singh Y, Puri S, Singh PK (2012) Ecofriendly management of Fusarium wilt of brinjal. Ecol Environ Conserv 18:1049–1052

    Google Scholar 

  • Bolívar-Anillo HJ, Garrido C, Collado IG (2020) Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev 19(3):721–740

    Article  CAS  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306

    Article  CAS  Google Scholar 

  • Castiglione S, Oliva G, Vigliotta G, Novello G, Gamalero E, Lingua G, Cicatelli A, Guarino F (2021) Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance. Appl Sci 11(5):2125

    Article  CAS  Google Scholar 

  • Chaudhary S, Vaish B, Singh RP, Prasad V (2020) Bioactive compost: an approach for managing plant growth in environmentally stressed soils. In: New frontiers in stress management for durable agriculture. Springer, Singapore, pp 257–267

    Chapter  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9(1):1–14

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val EK, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant Microbe Interact 27(6):503–514

    Article  CAS  PubMed  Google Scholar 

  • Danon M, Zmora-Nahum S, Chen Y, Hadar Y (2007) Prolonged compost curing reduces suppression of Sclerotium rolfsii. Soil Biol Biochem 39(8):1936–1946

    Article  CAS  Google Scholar 

  • De Brito AM, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61(1):194–199

    Article  PubMed  PubMed Central  Google Scholar 

  • De Corato U (2020) Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: a critical review. Rhizosphere 13(100):192

    Google Scholar 

  • de Souza Vandenberghe LP, Garcia LMB, Rodrigues C, Camara MC, de Melo Pereira GV, de Oliveira J, Soccol CR (2017) Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiol 3(3):629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. Amb Express 4(1):1–7

    Article  CAS  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8(11):267

    Article  CAS  Google Scholar 

  • Duo LA, Liu CX, Zhao SL (2018) Alleviation of drought stress in turfgrass by the combined application of nano-compost and microbes from compost. Russ J Plant Physiol 65(3):419–426

    Article  CAS  Google Scholar 

  • Eusuf Zai AK, Horiuchi T, Matsui T (2009) Bio-active compost from pea plant enriched with chicken manure and oilseed rape cake and its effect on yields and nutrient recovery efficiencies of wheat and rice. Archiv Agron Soil Sci 55(4):345–357

    Article  Google Scholar 

  • Ghareeb RY, Alfy H, Fahmy AA, Ali HM, Abdelsalam NR (2020) Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci Rep 10(1):1–15

    Article  CAS  Google Scholar 

  • Gimenez E, Salinas M, Manzano-Agugliaro F (2018) Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10(2):391

    Article  Google Scholar 

  • González-Hernández AI, Suárez-Fernández MB, Pérez-Sánchez R, Gómez-Sánchez MÁ, Morales-Corts MR (2021) Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy 11(4):781

    Article  CAS  Google Scholar 

  • Harman GE (2011) Trichoderma—not just for biocontrol anymore. Phytoparasitica 39(2):103–108

    Article  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Shi D, Sun F, Lu H, Liu J, Wu W (2012) Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber. Environ Sci Pollut Res 19(9):3895–3905

    Article  Google Scholar 

  • Iqbal Z, Iqbal MS, Hashem A, Abd Allah EF, Ansari MI (2021) Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci 12:297

    Article  Google Scholar 

  • Jalil SU, Ansari MI (2018) Plant microbiome and its functional mechanism in response to environmental stress. Int J Green Pharm 12(01):81–92

    Google Scholar 

  • Kavitha R, Subramanian P (2007) Bioactive compost—a value added compost with microbial inoculants and organic additives. J Appl Sci 7(17):2514–2518

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121(1):1–6

    Article  CAS  Google Scholar 

  • Khan M, Khan AU, Hasan MA, Yadav KK, Pinto M, Malik N, Yadav VK, Khan AH, Islam S, Sharma GK (2021) Agro-nanotechnology as an emerging field: a novel sustainable approach for improving plant growth by reducing biotic stress. Appl Sci 11(5):2282

    Article  CAS  Google Scholar 

  • Kleczewski N, Chapara V, Bradley CA (2020) Occurrence of viruses and Clavibacter michiganensis in winter wheat in Illinois, 2009 to 2011 and 2019 to 2020. Plant Health Prog 21(4):317–320

    Article  Google Scholar 

  • Labrie C, Leclerc P, Côté N, Roy S, Brzezinski R, Hogue R, Beaulieu C (2001) Effect of chitin waste-based composts produced by two-phase composting on two oomycete plant pathogens. Plant and Soil 235(1):27–34

    Article  CAS  Google Scholar 

  • Lopes MJDS, Dias-Filho MB, Gurgel ESC (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain Food Syst 5:48

    Article  Google Scholar 

  • Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94(9):fiy137

    Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Marosz A (2012) Effect of green waste compost and mycorrhizal fungi on calcium, potassium, and sodium uptake of woody plants grown under salt stress. Water Air Soil Pollut 223(2):787–800

    Article  CAS  Google Scholar 

  • Mathews JR, Sivparsad BJ, Laing MD (2019) Greenhouse evaluation of Trichoderma harzianum for the control of Sclerotinia wilt (Sclerotinia sclerotiorum) of sunflower. South Afr J Plant Soil 36(1):69–72

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34(3):607–622

    Article  CAS  PubMed  Google Scholar 

  • Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH (2021) Predictability of biotic stress structures plant defence evolution. Trends Ecol Evol 36(5):444–456

    Article  PubMed  Google Scholar 

  • Miles LS, Breitbart ST, Wagner HH, Johnson MT (2019) Urbanization shapes the ecology and evolution of plant-arthropod herbivore interactions. Front Ecol Evol 7:310

    Article  Google Scholar 

  • Mohd Taha MD, Mohd Jaini MF, Saidi NB, Abdul Rahim R, Md Shah UK, Mohd Hashim A (2019) Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS One 14(12):e0224431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric 97(15):5139–5145

    Article  CAS  PubMed  Google Scholar 

  • Ozer N, Koycu ND (2006) The ability of plant compost leachates to control black mold (Aspergillus niger) and to induce the accumulation of antifungal compounds in onion following seed treatment. BioControl 51(2):229–243

    Article  Google Scholar 

  • Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51

    Article  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Contr 56(2):115–124

    Article  Google Scholar 

  • Peerzado MB, Magsi H, Sheikh MJ (2019) Land use conflicts and urban sprawl: Conversion of agriculture lands into urbanization in Hyderabad, Pakistan. J Saudi Soc Agric Sci 18(4):423–428

    Google Scholar 

  • Petrasch S, Knapp SJ, Van Kan JA, Blanco-Ulate B (2019) Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol 20(6):877–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Pugliese M, Liu B, Gullino ML, Garibaldi A (2011) Microbial enrichment of compost with biological control agents to enhance suppressiveness to four soil-borne diseases in greenhouse. J Plant Dis Protect 118(2):45–50

    Article  Google Scholar 

  • Ramadass K, Palaniyandi S (2007) Effect of enriched municipal solid waste compost application on soil available macronutrients in the rice field. Archiv Agron Soil Sci 53(5):497–506

    Article  CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil 347(1):387–400

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8(2):34

    CAS  Google Scholar 

  • Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N (2017) Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J 92(5):761–773

    Article  CAS  PubMed  Google Scholar 

  • Rubio MB, de Medeiros HA, Morán-Diez ME, Castillo P, Hermosa R, Monte E (2019) A split-root method to study systemic and heritable traits induced by Trichoderma in tomato plants. In: Methods in rhizosphere biology research. Springer, Singapore, pp 151–166

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev S, Singh A, Singh RP (2018) Optimization of culture conditions for mass production and bio-formulation of Trichoderma using response surface methodology. 3 Biotech 8(8):1–8

    Article  Google Scholar 

  • Sachdev S, Singh RP (2018a) Isolation, characterisation and screening of native microbial isolates for biocontrol of fungal pathogens of tomato. Clim Change Environ Sustain 6(1):46–58

    Article  Google Scholar 

  • Sachdev S, Singh RP (2018b) Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Ecol Environ Sci 3:240–242

    Google Scholar 

  • Sachdev S, Singh RP (2020) Trichoderma: a multifaceted fungus for sustainable agriculture. In: Ecological and practical applications for sustainable agriculture. Springer, Singapore, pp 261–304

    Chapter  Google Scholar 

  • Saddique M, Kamran M, Shahbaz M (2018) Differential responses of plants to biotic stress and the role of metabolites. In: Plant metabolites and regulation under environmental stress. Academic Press, Amsterdam, pp 69–87

    Google Scholar 

  • Saha N, Biswas S, Mondal S, Dey D, Dasgupta S (2020) Value addition in compost. In: Recent trends in composting technology. IK International, New Delhi

    Google Scholar 

  • Saijo Y, Loo EPI (2020) Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225(1):87–104

    Article  PubMed  Google Scholar 

  • Scott P, Bader MKF, Burgess T, Hardy G, Williams N (2019) Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environ Sci Policy 101:175–182

    Article  Google Scholar 

  • Serra-Wittling C, Houot S, Alabouvette C (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol Biochem 28(9):1207–1214

    Article  CAS  Google Scholar 

  • Sharma A, Saha TN, Arora A, Shah R, Nain L (2017) Efficient microorganism compost benefits plant growth and improves soil health in calendula and marigold. Hortic Plant J 3(2):67–72

    Article  Google Scholar 

  • Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB (2020) Xanthomonas diversity, virulence and plant–pathogen interactions. Nat Rev Microbiol 18(8):415–427

    Article  CAS  PubMed  Google Scholar 

  • Ullah N, Ditta A, Imtiaz M, Li X, Jan AU, Mehmood S, Rizwan MS, Rizwan M (2021) Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: a review. J Agron Crop Sci 207:783

    Article  CAS  Google Scholar 

  • Verma S, Sharma A, Kumar R, Kaur C, Arora A, Shah R, Nain L (2015) Improvement of antioxidant and defense properties of tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J Biol Sci 22(3):256–264

    Article  CAS  PubMed  Google Scholar 

  • Vieira PM, Zeilinger S, Brandao RS, Vianna GR, Georg RC, Gruber S, Aragao FJL, Ulhoa CJ (2018a) Overexpression of an aquaglyceroporin gene in the fungal biocontrol agent Trichoderma harzianum affects stress tolerance, pathogen antagonism and Phaseolus vulgaris development. Biol Contr 126:185–191. https://doi.org/10.1016/j.biocontrol.2018.08.012

    Article  CAS  Google Scholar 

  • Vieira PM, Zeilinger S, Brandao RS, Vianna GR, Georg RC, Gruber S, Aragao FJL, Ulhoa CJ (2018b) Overexpression of an aquaglyceroporin gene in the fungal biocontrol agent Trichoderma harzianum affects stress tolerance, pathogen antagonism and Phaseolus vulgaris development. Biol Contr 126:185–191

    Article  CAS  Google Scholar 

  • Vitullo D, Altieri R, Esposito A, Nigro F, Ferrara M, Alfano G, Ranalli G, Cicco VD, Lima G (2013) Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants. Int J Environ Sci Technol 10(2):209–220

    Article  CAS  Google Scholar 

  • Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, Ruan Y, Shen Q (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49(4):435–446

    Article  Google Scholar 

  • Wang SY, Shi XC, Chen X, Laborda P, Zhao YY, Liu FQ, Laborda P (2021) Biocontrol ability of phenazine-producing strains for the management of fungal plant pathogens: a review. Biol Contr 104:548

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Lozano-Durán R, Macho AP (2020) Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plan Theory 9(4):516

    CAS  Google Scholar 

  • Zafar-ul-Hye M, Tahzeeb-ul-Hassan M, Wahid A, Danish S, Khan MJ, Fahad S, Brtnicky N, Hussain GS, Battaglia ML, Datta R (2021) Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep 11(1):1–20

    Article  CAS  Google Scholar 

  • Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Müller J (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plant 41(6):91

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Ansari, S.A., Ansari, M.I. (2022). Bioactive Compost for Managing Plant Growth Under Stress Environment. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_15

Download citation

Publish with us

Policies and ethics