Skip to main content

Brassinosteroid and Ethylene-Mediated Cross Talk in Plant Growth and Development

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Plant hormones regulate multiple physiological and metabolic systems through different signaling channels. The complex signaling network and metabolic processes play a major role in plant growth and responses to various environmental stresses. Extensive studies have unveiled most of the members of plant hormones and elucidate their principal effects on plant cell systems. Brassinosteroids (BRs) and ethylene are the two major biomolecules playing adorable roles in plant growth, physiological processes, and stress responses. Their collective interaction with each other and physiological parameters harmonize the important functions at different stages of plant growth and development. They also play a major role in biotic and abiotic stresses. This study examined the interrelation of ethylene and BRs during different developmental stages. It also highlights the two hormones’ role during fruit ripening, stomatal closure, reproduction, abiotic stresses, and biotic stresses. The BRs and ethylene possess an antagonistic influence on the expansin gene AtEXPA5 expression. That antagonistic interrelation is responsible for the hook formation during the gravitropic growth of hypocotyls. The ethylene and BR cross talk comprises a complex network of signaling pathways, e.g., the ACC synthase pathway. Phytotoxins positively interact with ethylene pushing the plant into more stressed conditions. In this study, we have accounted both the hormones together to understand the plant responses better. This will help in providing knowledge of different interacting processes involved in these hormones. The cross talks of important plant hormones, such as BRs and ethylene, will provide us remarkable proficiency to induce stress resistance and enhance plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, H. M. K., et al. (2020). Metabolic and transcriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genomics, 21, 365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, A., & Ashraf, Y. (2016). In vitro and in vivo management of Alternaria leaf spot of Brassica campestris L. Journal of Plant Pathology & Microbiology, 7, 1000365.

    Article  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2013). Cytological and physiological basis for tomato varietal resistance against Alternaria alternata. Journal of the Science of Food and Agriculture, 93, 2315–2322.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2014a). Intracellular interactions involved in induced systemic resistance in tomato. Scientia Horticulturae (Amsterdam), 176(127–133).

    Google Scholar 

  • Ahmad, A., Shafique, S., Shafique, S., & Akram, W. (2014b). Penicillium oxalicum directed systemic resistance in tomato against Alternaria alternata. Acta Physiologiae Plantarum, 36, 1231–1240.

    Article  CAS  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2014c). Molecular basis of antifungal resistance in tomato varieties. Pakistan Journal of Agricultural Sciences, 51, 683–687.

    Google Scholar 

  • Ahmad, A., et al. (2019). Benzenedicarboxylic acid upregulates O48814 and Q9FJQ8 for improved nutritional contents of tomato and low risk of fungal attack. Journal of the Science of Food and Agriculture, 99, 6139–6154.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., et al. (2020a). Dopamine alleviates hydrocarbon stress in Brassica oleracea through modulation of physio-biochemical attributes and antioxidant defense systems. Chemosphere, 128633. https://doi.org/10.1016/j.chemosphere.2020.128633

  • Ahmad, A., et al. (2020b). Metabolic and proteomic perspectives of augmentation of nutritional contents and plant defense in Vigna unguiculata. Biomolecules, 10, 224.

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmad, A., et al. (2020c). First report of Fusarium nelsonii causing early-stage fruit blight of cucumber in Guangzhou, China. Plant Disease, 104, 1542.

    Article  Google Scholar 

  • Ahmad, A., et al. (2021a). Functional and structural analysis of a novel acyltransferase from pathogenic Phytophthora melonis. ACS Omega. https://doi.org/10.1021/acsomega.0c03186

  • Ahmad, A., et al. (2021b). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere, 262, 128384.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, S., et al. (2017). Characterization of anti-bacterial compounds from the seed coat of Chinese windmill palm tree (Trachycarpus fortunei). Frontiers in Microbiology, 8, 1894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar, S. S., Mekureyaw, M. F., Pandey, C., & Roitsch, T. (2020). Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Frontiers in Plant Science, 10, 1777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akram, W., Anjum, T., Ali, B., & Ahmad, A. (2013). Screening of native bacillus strains to induce systemic resistance in tomato plants against fusarium wilt in split root system and its field applications. International Journal of Agriculture and Biology, 15, 1289.

    Google Scholar 

  • Akram, W., Anjum, T., Ahmad, A., & Moeen, R. (2014). First report of Curvularia lunata causing leaf spots on Sorghum bicolor from Pakistan. Plant Disease, 98, 1007.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, T., Akram, W., Shafique, S., Sahfique, S., & Ahmad, A. (2017). Metabolomic analysis identifies synergistic role of hormones biosynthesis and phenylpropenoid pathways during fusarium wilt resistance in tomato plants. International Journal of Agriculture and Biology, 19, 1073–1078.

    Article  CAS  Google Scholar 

  • Ayub, R. A., Reis, L., Lopes, P. Z., & Bosetto, L. (2018). Ethylene and brassinosteroid effect on strawberry ripening after field spray Efeito do etileno e do brassinoestereoide no amadurecimento do morango após aplicação no campo. Revista Brasileira de Fruticultura, 40, 1–6.

    Article  Google Scholar 

  • Azzi, L., et al. (2015). Fruit growth-related genes in tomato. Journal of Experimental Botany, 66, 1075–7086.

    Article  CAS  PubMed  Google Scholar 

  • Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F., & van der Linden, G. (2018). Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. The Plant Journal, 93, 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Bashir, Z., et al. (2013). Quantification of cellulose contents by transmission spectra of plant tissues. Cellulose Chemistry and Technology, 47, 509.

    CAS  Google Scholar 

  • Bashir, Z., et al. (2016). Tomato plant proteins actively responding to fungal applications and their role in cell physiology. Frontiers in Physiology, 7, 257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergonci, T., Silva-Filho, M. C., & Moura, D. S. (2014). Antagonistic relationship between AtRALF1 and brassinosteroid regulates cell expansion-related genes. Plant Signaling & Behavior, 9, 16–18.

    Article  CAS  Google Scholar 

  • Chen, I. J., et al. (2013). A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings. Plant Science, 209, 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Cherian, S., Figueroa, C. R., & Nair, H. (2014). ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany, 65, 4705–4722.

    Article  CAS  PubMed  Google Scholar 

  • Deslauriers, S. D., & Larsen, P. B. (2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in arabidopsis hypocotyls. Molecular Plant, 3, 626–640.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58, 9–17.

    Article  CAS  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Greco, M., Chiappetta, A., Bruno, L., & Bitonti, M. B. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany, 63, 695–709.

    Article  CAS  PubMed  Google Scholar 

  • Grierson, C., Nielsen, E., Ketelaarc, T., & Schiefelbein, J. (2014). Root hairs. Arabidopsis Book, 12, e0172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafeez, M., et al. (2019). Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Management Science, 75, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, L., Golparvar, A. R., Nasr Esfahani, M., & Golabadi, M. (2019). Correlation between cucumber genotype and resistance to damping-off disease caused by Phytophthora melonis. Biotechnology and Biotechnological Equipment, 33, 1494–1504.

    Article  CAS  Google Scholar 

  • Hoque, T. S., et al. (2016). Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science, 7, 1341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain, M. Z., Hossain, M. D., & Fujita, M. (2006). Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biologia Plantarum, 50, 210–218.

    Article  CAS  Google Scholar 

  • Hu, S., et al. (2020). Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Horticulture Research, 7, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, K., et al. (2010). What molecular mechanism is adapted by plants during salt stress tolerance? African Journal of Biotechnology, 9, 416–422.

    CAS  Google Scholar 

  • Ibrahim, A., Shahid, A. A., & Ahmad, A. (2017). Evaluation of carrier materials to develop Bacillus subtilis formulation to control root knot nematode infection and promote agroeconomic traits in eggplant. Journal of Animal and Plant Sciences, 27, 1321–1330.

    CAS  Google Scholar 

  • Iqbal, N., et al. (2017). Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science, 8, 1–19.

    Article  Google Scholar 

  • Jiang, K., & Asami, T. (2018). Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, Biotechnology, and Biochemistry, 82, 1265–1300.

    Article  CAS  PubMed  Google Scholar 

  • Kader, M. A., & Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling & Behavior, 5, 233–238.

    Article  Google Scholar 

  • Khan, W. U., Ahmad, S. R., Yasin, N. A., Ali, A., & Ahmad, A. (2017a). Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. International Journal of Phytoremediation, 19, 514.

    Article  PubMed  CAS  Google Scholar 

  • Khan, W. U., et al. (2017b). Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. International Journal of Phytoremediation, 19, 470.

    Article  CAS  PubMed  Google Scholar 

  • Khan, W. U., et al. (2018). Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. International Journal of Phytoremediation, 20, 581.

    Article  PubMed  CAS  Google Scholar 

  • Khan, T. A., et al. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500–511.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Khurana, A., & Sharma, A. K. (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 65, 4561–4575.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Choi, J., An, G., & Kim, S. R. (2017). Ectopic expression of OsSta2 enhances salt stress tolerance in rice. Frontiers in Plant Science, 8, 1–14.

    Article  Google Scholar 

  • Lee, S.-C., et al. (2017). Genome-wide identification of the dehydrin genes in the cucurbitaceae species. Plant Breeding and Biotechnology, 5, 282–292.

    Article  Google Scholar 

  • Li, J., et al. (2016). Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Frontiers in Plant Science, 7, 1–17.

    Google Scholar 

  • Li, G., et al. (2021). Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. Chemosphere, 263, 127999.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z., Zhong, S., & Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany, 60, 3311–3336.

    Article  CAS  PubMed  Google Scholar 

  • Locato, V., Cimini, S., & De Gara, L. (2013). Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Frontiers in Plant Science, 4, 1–12.

    Article  Google Scholar 

  • Lu, Y., et al. (2017). Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves. Frontiers in Plant Science, 8, 1–13.

    Article  Google Scholar 

  • Lv, B., et al. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 14, 1–26.

    Article  CAS  Google Scholar 

  • Manzano, S., et al. (2011). The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regulation, 65, 213–221.

    Article  CAS  Google Scholar 

  • Mazzella, M. A., Casal, J. J., Muschietti, J. P., & Fox, A. R. (2014). Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science, 5, 1–13.

    Article  Google Scholar 

  • McAtee, P., Karim, S., Schaffer, R., & David, K. (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science, 4, 1–7.

    Article  Google Scholar 

  • Montoya, T., et al. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Müller, R., & Stummann, B. M. (2003). Postharvest physiology | ethylene. Encyclopedia of Rose Science, 557–564. https://doi.org/10.1016/b0-12-227620-5/00064-1

  • Naemi, F., Asghari, G., Yousofi, H., & Yousefi, H. A. (2014). Chemical composition of essential oil and anti trichomonas activity of leaf, stem, and flower of Rheum ribes L. extracts. Avicenna Journal of Phytomedicine, 4, 191–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan, T. M., Vukasinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell, 32, 298–318.

    Article  CAS  Google Scholar 

  • Papadopoulou, E., & Grumet, R. (2005). Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. HortScience, 40, 1763–1767.

    Article  CAS  Google Scholar 

  • Parvin, K., Ahamed, K. U., Islam, M. M., & Haque, M. N. (2015). Response of tomato plant under salt stress: Role of exogenous calcium. Journal of Plant Sciences, 10, 222–233.

    Article  CAS  Google Scholar 

  • Roelfsema, M. R. G., & Hedrich, R. (2005). In the light of stomatal opening: New insights into ‘the Watergate’. The New Phytologist, 167, 665–691.

    Article  CAS  PubMed  Google Scholar 

  • Ross, A., & Williamson, C. (1951). Physiologically active emanations from virusinfected plants. Phytopathology, 41, 431.

    CAS  Google Scholar 

  • Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Frontiers in Plant Science, 6, 1–17.

    Article  Google Scholar 

  • Schaller, G. E. (2012). Ethylene and the regulation of plant development. BMC Biology, 10, 9–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafaghat, A. (2011). Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum. Natural Product Communications, 6, 1739–1742.

    Article  CAS  PubMed  Google Scholar 

  • Shafique, S., et al. (2014). Determination of molecular and biochemical changes in cotton plants mediated by mealybug. NJAS – Wageningen Journal of Life Sciences, 70–71, 39–45.

    Article  Google Scholar 

  • Shah, A. A., et al. (2020). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. Chemosphere, 261, 127728.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C., et al. (2015). Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. The Plant Journal, 82, 280–301.

    Article  CAS  PubMed  Google Scholar 

  • Singh, M., Gupta, A., & Laxmi, A. (2014a). Glucose control of root growth direction in Arabidopsis thaliana. Journal of Experimental Botany, 65, 2981–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, M., Gupta, A., & Laxmi, A. (2014b). Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signaling & Behavior, 9, 4–8.

    Article  Google Scholar 

  • Swanson, S., & Gilroy, S. (2010). ROS in plant development. Physiologia Plantarum, 138, 384–392.

    Article  CAS  PubMed  Google Scholar 

  • Symons, G. M., et al. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq, M., Shah, A. A., Yasin, N. A., Ahmad, A., & Rizwan, M. (2020). Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum. International Journal of Phytoremediation, 1–11. https://doi.org/10.1080/15226514.2020.1801572

  • Ul Haq, M. Z., Zhang, Z., Wei, J., & Qiang, S. (2020). Ethylene biosynthesis inhibition combined with cyanide degradation confer resistance to quinclorac in echinochloa crus-galli var. Mitis. International Journal of Molecular Sciences, 21, 1573.

    Article  CAS  Google Scholar 

  • Vardhini, B. V., & Anjum, N. A. (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2, 1–16.

    Article  Google Scholar 

  • Verma, S., Mamdani, M. M., Al-Omran, M., Melo, M., & Rouleau, J. L. (2007). Angiotensin receptor blockers vs. angiotensin converting enzyme inhibitors and acute coronary syndrome outcomes in elderly patients: A population-based cohort study (UMPIRE study results). Journal of the American Society of Hypertension, 1, 286–294.

    Article  PubMed  Google Scholar 

  • Vissenberg, K., Claeijs, N., Balcerowicz, D., & Schoenaers, S. (2020). Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. Journal of Experimental Botany, 71, 2412–2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. H., & Irving, H. R. (2011). Developing a model of plant hormone interactions. Plant Signaling & Behavior, 6, 494–500.

    Article  CAS  Google Scholar 

  • Wang, M., et al. (2015). Functional analysis of GmCPDs and investigation of their roles in flowering. PLoS One, 10, 1–25.

    Google Scholar 

  • Wei, L. J., et al. (2015). Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Frontiers in Plant Science, 6, 1–13.

    Article  Google Scholar 

  • Weller, J. L., et al. (2015). Ethylene signaling influences light-regulated development in pea. Plant Physiology, 169, 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., et al. (2019). Cell membrane-interrupting antimicrobial peptides from Isatis indigotica fortune isolated by a Bacillus subtilis expression system. Biomolecules, 10, 30.

    Article  PubMed Central  CAS  Google Scholar 

  • Yasin, N. A., et al. (2017). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0761-0

  • Yasin, N. A., et al. (2018a). Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environmental Science and Pollution Research, 25, 23236–23250.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2018b). The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, 20, 274.

    Article  CAS  PubMed  Google Scholar 

  • Yousaf, A., Qadir, A., Anjum, T., & Ahmad, A. (2015). Identification of microbial metabolites elevating vitamin contents in barley seeds. Journal of Agricultural and Food Chemistry, 63, 7304–7310.

    Article  CAS  PubMed  Google Scholar 

  • Zaharah, S. S., Singh, Z., Symons, G. M., & Reid, J. B. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 31, 363–372.

    Article  CAS  Google Scholar 

  • Zaheer, M. M., et al. (2017). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2017.1385808

  • Zhu, T., et al. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific Reports, 6, 1–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahzadi, I., Ahmad, A., Noreen, Z., Akram, W., Yasin, N.A., Khan, W.U. (2022). Brassinosteroid and Ethylene-Mediated Cross Talk in Plant Growth and Development. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_7

Download citation

Publish with us

Policies and ethics