Skip to main content

Halophilic, Acidophilic, Alkaliphilic, Metallophilic, and Radioresistant Fungi: Habitats and Their Living Strategies

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

The magnificent stress-resistant mechanism, capacity to transform extreme abiotic factors as triggers for genetic modulation and physiological evolution, synced speciation in response to altered environment, and highly innovative succession cum resource management skill have crowned the microorganisms as the “specialist messenger of life” that thrive under extreme conditions. However, in recent decade, the ubiquitous fungi have gathered attention after archaea and bacteria for their versatile ecological adaptation, morphological resilience, and biochemical flexibility that allowed them to sustain and flourish under nature’s deadliest environmental conditions. The inhospitable temperature, pressure, radiation, desiccation, salinity, and pH (both acidic and basic)-induced stress has capacitated a large number of extremophilic fungi with better sustainability factors. The “extraterrestrial” type of existence has been reported from hostile and lethal niches like frozen world of Antarctic and Arctic, deep sea ice and hydrothermal vents, hot springs, areas of high salt concentration, barren desert with extreme climate, toxic heavy metal and organic matter polluted regions, ocean trenches with high pressure, radiation contaminated zones, etc. The phylogenetic diversity of extremophilic fungi is highly complex exactly as their multidimensional mechanism of primary and secondary resource management, niche utilization, and physiological metabolism. From the bed of life-enriched rainforests to barren worlds full of toxic materials and fluctuating climate, this eukaryotic group has manifested great evolutionary plasticity and molecular strategies that are the center of interdisciplinary research that connects evolutionary biology, astrobiology, biochemistry, molecular biology, ecology, and many related fields of science. The modification of genetic make-up and introduction of specialized survival technique controlled via manipulation of metabolic pathways are not only associated with successful colonization of these fungal members but also important in terms of exploration of natural products from unexplored sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodríguez I, Cárdenas-González JF, Rodríguez Pérez AS, Oviedo JT, Martínez-Juárez VM (2018) Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorg Chem Appl 2018:3457196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Abri L (2011) Use of molecular approaches to study the occurrence of extremophiles and extremodures in non-extreme environments. PhD thesis, University of Sheffield, UK

    Google Scholar 

  • Ali I, Siwarungson N, Punnapayak H, Lotrakul P, Prasongsuk S, Bankeeree W, Rakshit SK (2014) Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi Province, Thailand. Pak J Bot 46:983–988

    Google Scholar 

  • Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197

    Article  CAS  PubMed  Google Scholar 

  • Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    Article  CAS  PubMed  Google Scholar 

  • Amaral Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sorgin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209

    Article  CAS  PubMed  Google Scholar 

  • Anahid S, Yaghmaei S, Ghobadinejad Z (2011) Heavy metal tolerance of fungi. Scientia Iranica 18(3):502–508

    Article  CAS  Google Scholar 

  • Andre L, Nillsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaromyces hansenii. J Gen Microbiol 134:669–677

    CAS  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes I, Presser TS, Saines M, Dickson P, Van Goos AFK (1982) Geochemistry of highly basis calcium hydroxide groundwater in Jordan. Chem Geol 35:147–154

    Article  CAS  Google Scholar 

  • Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latge JP (2012) Hydrophobins-unique fungal proteins. PLoS Pathog 8:e1002700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko SA, Ianutsevich EA, Sinitsyna NA, Georgieva ML, Bilanenko EN, Tereshina BM (2018) Dynamics of the cytosol soluble carbohydrates and membrane lipids in response to ambient pH in alkaliphilic and alkalitolerant fungi. Microbiology (Russian Fed) 87:21–32

    CAS  Google Scholar 

  • Brake SS, Hasiotis ST (2010) Eukaryoteedominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534–558

    Article  Google Scholar 

  • Brock TD (1978) Thermophilic microeorganisms and life at high temperatures. Springer, New York

    Book  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitas A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 1:73–79

    Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005a) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters: a potential source of foodborne toxigenic aspergilla and penicillia. FEMS Microbiol Ecol 77:186–199

    Article  CAS  PubMed  Google Scholar 

  • Caracuel Z, Casanova C, Roncero MIG, Di Pietro A, Ramos J (2003) pH response transcription factor PacC controls salt stress tolerance and expression of the P-type Na+-ATPase ena1 in fusarium oxysporum. Eukaryot Cell 2:1246–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Torsten T (2000) Extremophiles. In: Lederberg J (ed) Encyclopedia of microbiology, 2nd edn, vol 2. Academic Press Inc., San Diego, pp 317–337

    Google Scholar 

  • Charlesworth J, Burns BP (2016) Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol 2(3):251–261

    Article  CAS  Google Scholar 

  • Christel S (2018) Function and Adaptation of Acidophiles in Natural and Applied Communities. Doctoral dissertation, Linnaeus University Press

    Google Scholar 

  • Coker JA (2019) Recent advances in understanding extremophiles. F1000Research 8:F10000 Faculty Rev-1917

    Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146(1–2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell, London

    Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11(6):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-Dekker P (1983) Australian salt lakes: their history, chemistry, and biota-a review. Hydrobiologia 105:231–244

    Article  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, Van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Article  CAS  Google Scholar 

  • El Hidri D, Guesmi A, Najjari A, Cherif H, Ettoumi B, Hamdi C et al (2013) Cultivation-dependant assessment, diversity, and ecology of haloalkaliphilic bacteria in arid saline systems of southern Tunisia. Biomed Res Int 2013

    Google Scholar 

  • El Sayed MT, El-Sayed AS (2020) Tolerance and mycoremediation of silver ions by fusarium solani. Heliyon 6(5):e03866

    Article  PubMed  PubMed Central  Google Scholar 

  • Elíades LA, Cabello MN, Voget CE (2006) Contribution to the study of alkalophilic and alkali-tolerant ascomycota from Argentina. Darwin 44:64–73

    Google Scholar 

  • Fuchs U, Czymmek KJ, Sweigard JA (2004) Five hydrophobin genes in fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol 41:852–864

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 52:552–563

    Article  PubMed  Google Scholar 

  • Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb Ecol 42:87–98

    Article  CAS  PubMed  Google Scholar 

  • Gorjan A, Plemenitas A (2006) Identification and characterization of ENA ATPasesHwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 265:41–50

    Article  CAS  PubMed  Google Scholar 

  • Gostincar C, Turk M, Plemenitas A, Gunde-Cimerman N (2009) The expressions of D9-, D12-desaturases and an elongase by the extremely halotolerant Hortaea werneckii are salt dependent. FEMS Yeast Res 9:247–256

    Article  CAS  PubMed  Google Scholar 

  • Gostincar C, Grube M, de Hoog S, Zalar P, N. Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Google Scholar 

  • Gostinčar C, Lenassi M, Gunde-Cimerman N (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Horikoshi K (1989) Alkaliphiles. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology. Elsevier, London, pp 346–366

    Google Scholar 

  • Grant WD, Horikoshi K (1992) Alkaliphiles; ecology and biotechnological applications. In: Herbert RA, Sharpe RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow and London, pp 143–162

    Chapter  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433(1):91–109

    Article  Google Scholar 

  • Grum-Grzhimaylo AA, Debets AJ, van Diepeningen AD, Georgieva ML, Bilanenko EN (2013a) Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia. 31:147–158

    Google Scholar 

  • Grum-Grzhimaylo AA, Georgieva ML, Debets AJM, Bilanenko EN (2013b) Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus 4:213–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Guesmi A, Ettoumi B, El Hidri D, Essanaa J, Cherif H, Mapelli F, Marasco R, Rolli E, Boudabous A, Cherif A (2013) Uneven distribution of Halobacillus trueperi species in arid natural saline systems of southern Tunisian Sahara. Microb Ecol 66(4):831–839

    Article  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitas A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, Ur V, Zalar P, Plemenitas A (2005) Halotolerant and halophilic fungi from coastal environments in the arctics. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, bacteria, and Eukarya, cellular origin. Life in extreme habitats and astrobiology, vol 9. Springer, Dordrecht, pp 397–423

    Google Scholar 

  • Gupta GN, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotechnol 7(2):371–380

    Article  Google Scholar 

  • Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Leeuw 86:287–294

    Article  CAS  Google Scholar 

  • Hujslová M, Kubátová A, Chudíčková M, KolaříkM (2010) Diversity of fungal communities in saline and acidic soils in the Soos NationalNatural reserve, Czech Republic. Mycol Prog 9:1–15

    Article  Google Scholar 

  • Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. Et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Divers 58:33–45

    Article  Google Scholar 

  • Hujslová M, Kubátová A, Kostovčík M, Blanchette RA, de Beer ZW, Chudíčková M, Kolařík M (2014) Three new genera of fungi from extremely acidic soils. Mycol Prog 13:819–831

    Google Scholar 

  • Javor B (1989) Hypersaline environments: microbiology and biogeochemistry. Springer, Berlin

    Book  Google Scholar 

  • Jin Y, Weining S, Nevo E (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102:18992–18997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HW (1923) Relationships between hydrogen ion, hydroxyl ion and salt concentrations and the growth of seven soil molds. Agricultural Experiment Station, Iowa State College of Agriculture and the Mechanic Arts. Res Bull 76:307–344

    Google Scholar 

  • Jones BE, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG (ed) Bacterial diversity and systematics. Plenum Press, New York, pp 195–230

    Chapter  Google Scholar 

  • Joo JH, Hussein KA (2012) Heavy metal tolerance of fungi isolated from contaminated soil. Korean J Soil Sci Fertil 45(4):565–571

    Article  CAS  Google Scholar 

  • Jung KW, Yang DH, Kim MK, Seo HS, Lim S, Bahn YS (2016) Unraveling fungal radiation resistance regulatory networks through the genome-wide transcriptome and genetic analyses of Cryptococcus neoformans. MBio 7(6):e01483–e01416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapfer M (1998) Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany). Water Air Soil Pollut 108:331–340

    Article  CAS  Google Scholar 

  • Kazak H, Oner ET, Dekker RF (2010) Extremophiles as sources of exopolysaccharides. Development, Properties and Applications, Carbohydrate Polymers, pp 605–619

    Google Scholar 

  • Kladwang W, Bhumirattana A, Hywel-Jones N (2003) Alkaline-tolerant fungi from Thailand. Fungal Div 13:69–83

    Google Scholar 

  • Kogej T, Wheeler MH, Lanisnik Rizner T, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Gostincar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi –novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kozlova MV, Ianutsevich EA, Danilova OA, Kamzolkina OV, Tereshina VM (2019a) Lipids and soluble carbohydrates in the mycelium and ascomata of alkaliphilic fungus Sodiomyces alkalinus. Extremophiles 23:487–494

    Article  CAS  PubMed  Google Scholar 

  • Kozlova MV, Bilanenko EN, Grum-Grzhimaylo AA, Kamzolkina OV (2019b) An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus. Fungal Biol 123:140–150

    Article  CAS  PubMed  Google Scholar 

  • Kralj Kuncic M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337

    Article  PubMed  CAS  Google Scholar 

  • Kralj Kuncic M, Zajc J, Drobne D, Tkalec PZ, Gunde-Cimerman N (2013) Morphological responses to high sugar concentrations differ from adaptations to high salt concentrations in xerophilic fungi Wallemia spp. Fung Biol 117:466–478

    Article  CAS  Google Scholar 

  • Kumla D, Aung TS, Buttachon S, Dethoup T, Gales L, Pereira JA, Inácio Â, Costa PM, Lee M, Sekeroglu N, Silva AMS, Pinto MMM, Kijjoa A (2017) A new dihydrochromone dimer and other secondary metabolites from cultures of the marine sponge-associated fungi Neosartorya fennelliae KUFA 0811 and Neosartorya tsunodae KUFC 9213. Mar Drugs 15

    Google Scholar 

  • Lenassi M, Gostincar C, Jackman S, Turk M, Sadowski I, Nislow C et al (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8:e71328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Liu Y, Xie L, Liu X, Wei Y, Zhou X, Zhang S (2015) A ribosomal protein agRPS3aE from halophilic aspergillus glaucus confers salt tolerance in heterologous organisms. Int J Mol Sci 16:3058–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Xie L, Wei Y, Zhou X, Jia B, Liu J, Zhang S (2014) Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80:4294–4300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu XD, Wei Y, Zhou XY, Pei X, Zhang SH (2015) Aspergillus glaucus aquaglyceroporin gene glpF confers high osmosis tolerance in heterologous organisms. Appl Environ Microbiol 81:6926–6937

    Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934

    Article  PubMed  Google Scholar 

  • Luo X, Zhou X, Lin X, Qin X, Zhang T, Wang J, Tu Z, Yang B, Liao S, Tian Y, Pang X, Kaliyaperumal K, Li JL, Tao H, Liu Y (2017) Antituberculosis compounds from a deep-sea-derived fungus aspergillus sp. SCSIO Ind09F01. Nat Prod Res 31:1958–1962

    Article  CAS  PubMed  Google Scholar 

  • Masato TAKJL, Fujisawa MM, Hicks MIDB (2010) 2.6 adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo

    Google Scholar 

  • Matusiak DM (2016) Radiotolerant microorganisms-characterization of selected species and their potential usage. Postepy Mikrobiologii 55(2):182–194

    Google Scholar 

  • Mendes G, Gonçalves VN, Souza-Fagundes EM, Kohlhoff M, Rosa CA, Zani CL, Cota BB, Rosa LH, Johann S (2016) Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of aspergillus felis as a promising source of natural bioactive compounds. Mem Inst Oswaldo Cruz 111:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaux C, Pouyez J, Mayard A, Vandurm P, Housen I, Wouters J (2010) Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum. Biochimie 92:1407–1415

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Koorevaar M, Scchuur W (1992) Degradation of benzene compounds by yeasts in acidic soils. Plant Soil 145:37–43

    Article  CAS  Google Scholar 

  • Mirete S, Morgante V, González-Pastor JE (2017) Acidophiles: diversity and mechanisms of adaptation to acidic environments. AdaptiMicrobiLife Environ Extr:227–251

    Google Scholar 

  • Nagai K, Sakai T, Rantiatmodjo R, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi. Mycoscience 36:247–256

    Article  Google Scholar 

  • Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 39:293–298

    Article  CAS  Google Scholar 

  • Navarri M, Jégou C, Bondon A, Pottier S, Bach S, Baratte B, Ruchaud S, Barbier G, Burgaud G, Fleury Y (2017) Bioactive metabolites from the deep subseafloor fungus Oidiodendron griseum UBOCC-A-114129. Mar Drugs 15:1–10

    Article  CAS  Google Scholar 

  • Nikolay A, Léon A, Schwamborn K, Genzel Y, Reichl U (2018) Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl Microbiol Biotechnol 102(20):8725–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixdorf B, Kapfer M (1998) Stimulation of phototrophic pelagic and benthic metabolism close to sediments in acidic mining lakes. Water Air Soil Pollut 108:317–330

    Article  CAS  Google Scholar 

  • Okada G, Niimura Y, Sakata T, Uchimura T, Ohara N et al (1993) Acremonium alcalophilum, a new alkalophilic cellulolytic hyphomycete. Trans Mycol Soc Japan 34:171–185

    Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian J Microbiol 49(1):29–37

    Article  CAS  Google Scholar 

  • Onofri S, De Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, De La Torre R, Horneck G (2015) Survival of Antarctic Cryptoendolithic fungi in simulated Martian conditions on board the international Space Station. Astrobiology 15:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Onofri S, Selbmann L, Pacelli C, de Vera JP, Horneck G, Hallsworth JE, Zucconi L (2018) Integrity of the DNA and cellular ultrastructure of cryptoendolithic fungi in space or mars conditions: a 1.5-year study at the international space station. Life 8:1–16

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurposesecondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  CAS  PubMed  Google Scholar 

  • Otohinoyi DA, Omodele I (2015) Prospecting microbial extremophiles as valuable resources of biomolecules for biotechnological applications. Int J Sci Rese 4(1):1042–1059

    Google Scholar 

  • Pacelli C, Selbmann L, Zucconi L, Coleine C, De Vera JP, Rabbow E, Böttger U, Dadachova E, Onofri S (2019) Responses of the black fungus Cryomyces antarcticus to simulated mars and space conditions on rock analogs. Astrobiology 19:209–220

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:1–13

    Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 6:4005–4009

    Article  Google Scholar 

  • Putri SP, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2010) Ophiosetin, a new tetramic acid derivative from the mycopathogenic fungus Elaphocordyceps ophioglossoides. J Antibiot (Tokyo) 63:195–198

    Article  CAS  Google Scholar 

  • Ragon M, Restoux G, Moreira D, Møller AP, López-García P (2011) Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PLoS One 6(7):e21764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246

    Article  Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sharma R, Devi T (2017) Life at extreme conditions: extremophiles and their biocatalytic potential. Int J Adv Res Sci Eng 6:1413–1420

    Google Scholar 

  • Shuryak I, Matrosova VY, Volpe RP, Grichenko O, Klimenkova P, Conze IH, Balygina IA, Gaidamakova EK, Daly MJ (2019) Chronic gamma radiation resistance in fungi correlates with resistance to chromium and elevated temperatures, but not with resistance to acute irradiation. Sci Rep 9(1):1–1

    Google Scholar 

  • Sigler L, Camichaeil JW (1974) A new acidophilic Scytalidiurn. Can J Microbiol 20:267–268

    Article  CAS  PubMed  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measure- ment and homeostasis in bacteria and archaea. Adv Microbiol Physiol 55:1–317

    Article  CAS  Google Scholar 

  • Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366(2–3):649–658

    Article  CAS  PubMed  Google Scholar 

  • Tam PC (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5(3):181–187

    Article  CAS  Google Scholar 

  • Turk M, Méjanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Abramovic Z, Plemenitac A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  CAS  PubMed  Google Scholar 

  • Ulukanli Z, Diurak M (2002) Alkaliphilic micro-organisms and habitats. Turk J Biol 26:181–191

    Google Scholar 

  • Valix M, Tang JY, Malik R (2001) Heavy metal tolerance of fungi. Miner Eng 14(5):499–505

    Article  CAS  Google Scholar 

  • Wang H, Wang Y, Liu P, Wang W, Fan Y, Zhu W (2013) Purpurides B and C, two new sesquiterpene esters from the aciduric fungus Penicillium purpurogenum JS03-21. Chem Biodivers 10:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen R, Luo Z, Wang W, Chen J (2018) Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat Prod Res 32:558–563

    Article  PubMed  CAS  Google Scholar 

  • Whitton BA (1970) Toxicity of heavy metals to fresh water algae: a review. Phykos 9:116–125

    CAS  Google Scholar 

  • Wosten HA (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chen J, Xu H, Li D (2014) Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genet Biol 69:75–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2017) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci Bot 01

    Google Scholar 

  • Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455

    Article  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Zajc J, Zalar P, Plemenitaš A, Gunde-Cimerman N (2012) The mycobiota of the salterns. In: Progress in molecular and subcellular biology, pp 133–158. https://doi.org/10.1007/978-3-642-23342-5_10

    Chapter  Google Scholar 

  • Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2013a) The osmoadaptation strategy of the most halophilic fungus Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256

    Article  PubMed  CAS  Google Scholar 

  • Zajc J, Liu YF, Dai WK, Yang ZY, Hu JZ, Gostincar C et al (2013b) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617. https://doi.org/10.1186/1471-2164-14-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimermana N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256. https://doi.org/10.1128/AEM.02702-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharova K, Marzban G, De Vera JP, Lorek A, Sterflinger K (2014) Protein patterns of black fungi under simulated Mars-like conditions. Sci Rep 4:1–7. https://doi.org/10.1038/srep05114

    Article  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Taxonomy of the endoconidial genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56

    Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. Et Ord. Nov.). Antonie Van Leeuwenhoek 87:311–328

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are extremely thankful to UGC, Government of India, for financial assistance. The authors are highly grateful to Presidency University-FRPDF fund, Kolkata, for providing needed research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, T. et al. (2022). Halophilic, Acidophilic, Alkaliphilic, Metallophilic, and Radioresistant Fungi: Habitats and Their Living Strategies. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_9

Download citation

Publish with us

Policies and ethics