Skip to main content

Salvinia (Salvinia Molesta) and Water Hyacinth (Eichhorniacrassipes): Two Pernicious Aquatic Weeds with High Potential in Phytoremediation

  • Conference paper
  • First Online:
Advances in Sustainable Development

Abstract

The two free-floating aquatic weeds—salvinia (Salvinia molesta) and water hyacinth (Eichhornia crassipes) —feature among the world’s 100 most invasive plants and animals. Both occur widely in India as also in most other countries of the tropical and sub-tropical region. In this brief review the attributes of the two weeds, with special reference to their role in phytoremediation, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luque, G. M., Bellard, C., Bertelsmeier, C., Bonnaud, E., Genovesi, P., Simberloff, D., & Courchamp, F. (2014). The 100th of the world’s worst invasive alien species. Biological Invasions. https://doi.org/10.1007/s10530-013-0561-5.

  2. Abbasi, S. A., & Nipaney, P. C., (1986). Infestation by aquatic weeds of the fern genus salvinia-its status and control. Environmental Conservation, (Elsevier), 13(3), 235–241.

    Google Scholar 

  3. Abbasi, S. A., & Nipaney, P. C. (1994). Potential of aquatic weed Salvinia molesta (Mitchell) for water-treatment and energy recovery. Indian Journal of Chemical Technology, 1(4), 204–213.

    Google Scholar 

  4. Ting-Toomey, S., & Dorjee, T. (2018). Communicating across cultures. Guilford Publications.

    Google Scholar 

  5. Chen, Z., Huang, L., Song, S., Zhang, Y., Li, Y., Tan, H., & Li, X. (2019). Enhanced disappearance of mesotrione and fomesafen by water hyacinth (Eichhorniacrassipes) in water. International Journal of Phytoremediation, 21(6), 583–589.

    Article  Google Scholar 

  6. Tabinda, A. B., Arif, R. A., Yasar, A., Baqir, M., Rasheed, R., Mahmood, A., & Iqbal, A. (2019). Treatment of textile effluents with Pistia stratiotes, Eichhorniacrassipes and Oedogonium sp. International Journal of Phytoremediation.

    Google Scholar 

  7. Rezania, S., Ponraj, M., Din, M. F. M., Songip, A. R., Sairan, F. M., & Chelliapan, S. (2015). The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renewable and Sustainable Energy Reviews, 41, 943–954.

    Article  Google Scholar 

  8. Newete, S. W., & Byrne, M. J. (2016). The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environmental Science and Pollution Research, 23(11), 10630–10643.

    Article  Google Scholar 

  9. De Laet, C., Matringe, T., Petit, E., & Grison, C. (2019). Eichhorniacrassipes: a powerful bio-indicator for water pollution by emerging pollutants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43769-4.

  10. Abbasi, S. A., & Nipany, P. C. (1993). World’s worst weed: Impact and contro. (pp. xi + 226). International Book Distributors Dehradun.

    Google Scholar 

  11. Castillo Loría, K., Emiliani, J., Bergara, C. D., Herrero, M. S., Salvatierra, L. M., & Pérez, L. M. (2019). Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquatic Toxicology, 158–166.

    Google Scholar 

  12. Schwantes, D., Gonçalves, A. C., Schiller, A. D. P., Manfrin, J., Campagnolo, M. A., & Veiga, T. G. (2019). Salvinia auriculata in post-treatment of dairy industry wastewater. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2019.1633260

    Article  Google Scholar 

  13. Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., & Zhang, Z. (2019). Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation. Environmental Science and Pollution Research, 26(13), 12975–12984

    Google Scholar 

  14. Taleei, M. M., KarbalaeiGhomi, N., & Jozi, S. A. (2019). Arsenic removal of contaminated soils by phytoremediation of vetiver grass, chara algae and water hyacinth. Bulletin of Environmental Contamination and Toxicology, 102(1), 134–139.

    Google Scholar 

  15. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology and Innovation, 15. https://doi.org/10.1016/j.eti.2019.100393.

  16. Bernardino-Nicanor, A., Montañez-Soto, J. L., de los ÁngelesVivar-Vera, M., Juárez-Goiz, J. M., Acosta-García, G., & González-Cruz, L. (2016). Effect of drying on the antioxidant capacity and concentration of phenolic compounds in different parts of the Erythrina Americana tree. BioResources, 11(4), 9741–9755.

    Google Scholar 

  17. Queiroz, R. D. C. S. D., Andrade, R. S., Dantas, I. R., Ribeiro, V. D. S., Neto, L. B. R., & Almeida Neto, J. A. D. (2017). Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents. International journal of phytoremediation, 19(8), 781–788.

    Article  Google Scholar 

  18. Parwin, R., & Karar Paul, K. (2019). Phytoremediation of kitchen wastewater using Eichhorniacrassipes. Journal of Environmental Engineering (United States), 145(6). https://doi.org/10.1061/(asce)ee.1943-7870.0001520.

  19. Rani, V. U., & Bhambie, S. (1983). A study on the growth of Salvinia molesta Mitchell in relation to light and temperature. Aquatic Botany, 17(2), 119–124.

    Article  Google Scholar 

  20. Abbasi, S. A., & Nipaney, P. C. (1995). Productivity of aquatic weed Salvinia (Salvinia molesta, Mitchell)in natural waters. Ecology Environment and Conervations, 1(1–4), 11–12.

    Google Scholar 

  21. Abbasi, S. A., & Nipaney, P. C. (1988). Salvinia molesta (Mitchell) as a solar crop. Journal of the Solar Energy Society, 3, 19–26.

    Google Scholar 

  22. Creagh, C. (1991/1992). A marauding weed in check. Ecos 70 (Austral.), 26–29.

    Google Scholar 

  23. Gaudet, J. J. (1973). Growth of a floating aquatic weed, Salvinia, under standard conditions. Hydrobiologia, 41, 77–106.

    Article  Google Scholar 

  24. Mitchell, D. S., & Tur, N. M. (1975). The rate of growth of Salvinia molesta (S. auriculataAuct.) in laboratory and natural conditions. Journal of Applied Ecology, 213–225.

    Google Scholar 

  25. Farrell, T. P. (1979). Control of Salvinia molesta and Hydrilla verticillata in Lake Moondarra, Queensland. In: In Aust. Water Resources Council Seminar on Management of Aquatic Weeds (pp. 57–71).

    Google Scholar 

  26. Harley, K. L. S., & Mitchell, D. S. (1981). The biology of Australian weeds. 6. Salvinia molesta D. S. Mitchell. Journal of the Australian Institute of Agricultural Science, 47, 67–76.

    Google Scholar 

  27. Finlayson, C. M. (1984). Growth rates of Salvinia molesta in Lake Moondarra Mount Isa, Australia. Aquatic Botany, 18, 257–262.

    Article  Google Scholar 

  28. Thomas, P. A., & Room, P. M. (1986). Successful control of the floating weed Salvinia molesta in Papua New Guinea: a useful biological invasion neutralizes a disastrous one. Envirnomental Conservation, 13, 242–248.

    Article  Google Scholar 

  29. Room, P. M. (1990). Ecology of a simple plant-herbivore system. Biological control of Salvinia. Trends in Ecology and Evolution, 5(3), 74–79.

    Google Scholar 

  30. Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). The world’s worst weeds: Distribution and biology. Honolulu: The University Press of Hawaii.

    Google Scholar 

  31. Mitchell, D. S., Petr, T., & Viner, A. B. (1980). The water-fern Salvinia molesta in the Sepik River, Papua New Guinea. Environmental Conservation, 7(2), 115–122.

    Article  Google Scholar 

  32. Storrs, M. J., & Julien, M. H. (1996). Salvinia: A handbook for the integrated control of Salvinia molesta in Kakadu National Park. Australian Nature Conservation Agency.

    Google Scholar 

  33. Thomas, P. A., & Room, P. M. (1986). Taxonomy and control of Salvinia molesta. Nature, 320, 581–584.

    Article  Google Scholar 

  34. Ashton, P. J., & Mitchell, D. S. (1989) Aquatic plants: Patterns and modes of invasion, attributes of invading species and assessment of control programmes. Biological Invasions: A Global Perspective, 111, 154.

    Google Scholar 

  35. Loyal, D. S., & Grewal, R. K. (1966). Cytological study on sterility in Salvinia auriculataAublet with a bearing on its reproductive mechanism. Cytologia, 31, 330–338.

    Article  Google Scholar 

  36. Room, P. M. (1983). Falling apart ‘as a lifestyle: the rhizome architecture and population growth of Salvinia molesta. The Journal of Ecology, 349–365.

    Google Scholar 

  37. Werner, P. A. (1988). Alien plants in Kakadu National Park. Southeast Asian Weed Info. Cent., Bogor, Indonesia, Weedwatcher 8:12.

    Google Scholar 

  38. Barrett, S. C. H. (1989). Waterweed invasions. Scientific American, 260, 90–97.

    Article  Google Scholar 

  39. Cary, P. R., & Weerts, P. G. J. (1983). Growth of Salvinia molesta as affected by water temperature and nutrition. I. Effects of nitrogen level and nitrogen level and nitrogen compounds. Aquatic Botany, 16, 163–172.

    Article  Google Scholar 

  40. Cary, P. R., & Weerts, P. G. J. (1983). Growth of Salvinia molesta as affected by water temperature and nutrition. II. Effects of phosphorous levels. Aquatic Botany, 17, 61–70.

    Article  Google Scholar 

  41. Cary, P. R., & Weerts, P. G. J. (1984). Growth of Salvinia molesta as affected by water temperature and nutrition. III. Nitrogen-phosphorus interactions and effect of pH. Aquatic Botany, 19, 171–182.

    Google Scholar 

  42. Johnson, D. S. (1967). On the chemistry of freshwaters in southern Malaysia and Singapore. Archiv fur Hydrobiologie, 63, 477–496.

    Google Scholar 

  43. Divakaran, O., Arunachalam, M., & Nair, N. B. (1980). Growth rates of Salvinia molesta Mitchell with special reference to salinity. Proceedings of the Indian Academy of Science. Plant Science 89, 161–168.

    Google Scholar 

  44. Oliver, J. D. (1993). A review of the biology of giant salvinia. Faculty Publications and Presentations, 87. Press.

    Google Scholar 

  45. Room, P. M., & Thomas, P. A. (1986). Nitrogen, phosphorus and potassium in Salvinia molesta Mitchell in the field: effects of weather, insect damage, fertilizers and age. Aquatic Botany, 24(3), 213–232.

    Article  Google Scholar 

  46. Room, P. M., & Thomas, P. A. (1986). Population growth of the floating weed Salvinia molesta: field observation and a global model based on temperature and nitrogen. Journal of Applied Ecology, 1013–1028.

    Google Scholar 

  47. Julien, M. H., & Bourne, A. S. (1986). Compensatory branching and changes in nitrogen content in the aquatic weed Salvinia molesta in response to disbudding. Oecologia, 70, 250–257.

    Article  Google Scholar 

  48. Chantiratikul, P., Meechai, P., & Nakbanpotecc, W. (2009). Antioxidant activities and phenolic contents of extracts from Salvinia molesta and Eichorniacrassipes. Research Journal of Biological Science, 4, 1113–1117.

    Google Scholar 

  49. Rizvi, S. J. H., Haque, H., Singh, V. K., & Rizvi, V. (1992). A discipline called allelopathy. Allelopathy (pp. 1–10). Netherlands: Springer.

    Chapter  Google Scholar 

  50. Moozhiyil, M., & Pallauf, J. (1986). Chemical composition of the water fern, Salvinia molesta, and its potential as feed source for ruminants. Economic Botany, 40(3), 375–383.

    Article  Google Scholar 

  51. Leterme, P., Londoño, A. M., Ordoñez, D. C., Rosales, A., Estrada, F., Bindelle, J., & Buldgen, A. (2010). Nutritional value and intake of aquatic ferns (Azollafiliculoides Lam. and Salvinia molesta Mitchell.) in sows. Animal Feed Science and Technology, 155(1), 55–64.

    Google Scholar 

  52. Fileto, H. A., Rutiaga-Quiñones, J. G., Aguilar-González, C. N., Paéz, J. B., López, J., & Rutiaga-Quiñones, O. M. (2013). Evaluation of Eichhorniacrassipes as an alternative raw material for reducing sugars production. BioResources, 8(4), 5340–5348.

    Article  Google Scholar 

  53. Kumar, M. R., Tauseef, S. M., Abbasi, T., & Abbasi, S. A. (2015). Control of amphibious weed ipomoea (Ipomoea carnea) by utilizing it for the extraction of volatile fatty acids as energy precursors. Journal of Advanced Research, 6(1), 73–78.

    Article  Google Scholar 

  54. Kwabiah, A. B., Stoskopf, N. C., Voroney, R. P., & Palm, C. A. (2001). Nitrogen and phosphorus release from decomposing leaves under sub-humid tropical conditions 1. Biotropica, 33(2), 229–240.

    Article  Google Scholar 

  55. Abbasi, S. A. (1997) Wetlands of India, Volume III: Kerala (pp. xiv + 276). New Delhi: Discovery Publishing House.

    Google Scholar 

  56. McFarland, D. G., Nelson, L. S., Grodowitz, M. J., Smart, R. M., & Owens, C. S. (2004). Salvinia molesta DS Mitchell (Giant Salvinia) in the United States: A review of species ecology and approaches to management (No. ERDC/EL-SR-04–2). Engineer Research and Development Center Vicksburg MS Environmental Lab.

    Google Scholar 

  57. Sculthorpe, C.D. (1985). The biology of aquatic vascular plants (pp. 610). London: Edward Arnold. (reprint of 1967 edition).

    Google Scholar 

  58. Mitchell, D. S. (1969). The ecology of vascular hydrophytes on Lake Kariba. Hydrobiologia, 34(3–4), 448–464.

    Article  Google Scholar 

  59. Abbasi, S. A., Abbasi, N., Soni, R. (1998). Heavy metals in environment (pp. xvii + 314). New Delhi: Mittal Publications.

    Google Scholar 

  60. Hattingh, E. R. (1961). Problem of Salvinia auriculataAubl and associated aquatic weeds on Kariba Lake. Weed Research, 1, 303–306.

    Article  Google Scholar 

  61. Coates, D. (1982). Salvinia possible biological effects on fish in Papua New Guinea. Aquatics, 4(3), 2.

    Google Scholar 

  62. Sharma, K. P., & Goel, P. K. (1986). Studies on decomposition of two species of Salvinia. Hydrobiologia, 131, 57–61.

    Article  Google Scholar 

  63. Shindell, D. T., Levy, H., Schwarzkopf, M. D., Horowitz, L. W., Lamarque, J. F., & Faluvegi, G. (2008). Multimodel projections of climate change from short‐lived emissions due to human activities. Journal of Geophysical Research: Atmospheres113(D11).

    Google Scholar 

  64. Abbasi, T., & Abbasi, S. A. (2018). Perspectives in pollution control and sustainable development (pp. xi+569). New Delhi: Discovery Publishing House. ISBN:978-9-3505-6889-7.

    Google Scholar 

  65. Room, P. M., Gunatilaka, G. A., Shivanathan, P., & Fernando, I. V. S. (1989). Control of Salvinia molesta in Sri Lanka by Cyrtobagoussalviniae. In: Proceedings of the 7th International Symposium on the Biological Control of Weeds (pp. 285–290).

    Google Scholar 

  66. Bennett, D. (1975). The T-locus of the mouse. Cell, 6(4), 441–454.

    Article  Google Scholar 

  67. Hussain, N., Abbasi, T., & Abbasi, S. A. (2016). Vermiremediation of an invasive and pernicious weed salvinia (Salvinia molesta). Ecological Engineering, 91, 432–440.

    Article  Google Scholar 

  68. Costa-Pierce, B. A., & Doyle, R. W. (1997). Genetic identification and status of tilapia regional strains in southern California. Tilapia Aquaculture in the Americas, 1, 1–17.

    Google Scholar 

  69. Julien, M. H., & Griffiths, M. W. (1998). Biological control of weeds: A world catalogue of agents and their targets (4th ed.). Wallingford, UK: CABI.

    Google Scholar 

  70. King, C., McIntosh, D., & Fitzsimmons, K. (2004). Giant salvinia (Salvinia molesta) as a partial feed for Nile tilapia (Oreochromis niloticus). In: Proceedings, 6th International Symposium on Tilapia in Aquaculture, Manila, Philippines (pp. 12–16). (New dimensions on farmed tilapia).

    Google Scholar 

  71. Abbasi, S. A., & Nipaney, P. C. (1984). Generation of biogas from Salvinia molesta (Mitchell) on a commercial biogas digester. Environmental Technology, 5(1–11), 75–80.

    Google Scholar 

  72. Abbasi, S. A., & Nipaney, P. C. (1985). Wastewater treatment using aquatic plants. Survivability and growth of Salvinia molesta (Mitchell) over waters treated with zinc (II) and the subsequent utilization of the harvested weeds for energy (biogas) production. Resources and Conservation, 12(1), 47–55.

    Google Scholar 

  73. Abbasi, S. A., Nipaney, P. C., & Panholzer, M. B. (1991). Biogas production from the aquatic weed pistia (Pistia stratiotes). Bioresource Technology, 37(3), 211.

    Article  Google Scholar 

  74. Abbasi, S. A., Nipaney, P. C., & Schaumberg, G. D. (1990). Bioenergy potential of eight common aquatic weeds. Biological Wastes, 34(4), 359–366.

    Article  Google Scholar 

  75. Abbasi, S. A., Nipaney, P. C., & Ramasamy, E. V. (1992). Studies on multiphase anaerobic-digestion of salvinia. Indian Journal of Technology, 30(10), 483–490.

    Google Scholar 

  76. Abbasi, S. A., Nipaney, P. C., & Ramasamy, E. V. (1992). Use of aquatic weed salvinia (Salvinia molesta, Mitchell) as full partial feed in commercial biogas digesters. Indian Journal of Technology, 30(9), 451–457.

    Google Scholar 

  77. Raju, R. A., & Gangwar, B. (2004). Utilization of potassium-rich green-leaf manures for rice (Oryza sativa) nursery and their effect on crop productivity. Indian Journal of Agronomy, 49(4), 244–247.

    Google Scholar 

  78. Arthur, G. D., Stirk, W. A., Novák, O., Hekera, P., & van Staden, J. (2007). Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environmental and Experimental Botany, 61(2), 137–144.

    Article  Google Scholar 

  79. Dorahy, C. G., Pirie, A. D., McMaster, I., Muirhead, L., Pengelly, P., Chan, K. Y., & Barchia, I. M. (2009). Environmental risk assessment of compost prepared from Salvinia, and Alligator weed. Journal of Environmental Quality, 38(4), 1483–1492.

    Article  Google Scholar 

  80. Choudhary, M. I., Naheed, N., Abbaskhan, A., Musharraf, S. G., & Siddiqui, H. (2008). Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry, 69(4), 1018–1023.

    Article  Google Scholar 

  81. Li, S., Wang, P., Deng, G., Yuan, W., & Su, Z. (2013). Cytotoxic compounds from invasive giant salvinia (Salvinia molesta) against human tumor cells. Bioorganic and Medicinal Chemistry Letters, 23(24), 6682–6687.

    Article  Google Scholar 

  82. Abbasi, T., Gajalakshmi, S., & Abbasi, S. A. (2009). Towards modeling and design of vermicomposting systems: Mechanisms of composting/vermicomposting and their implications. Indian Journal of Biotechnology, 8, 177–182.

    Google Scholar 

  83. Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2011). The inclined parallel stack continuously operable vermireactor. Official Journal of the Patent Office, 22, 9571.

    Google Scholar 

  84. Abbasi, S. A., Nayeem-Shah, M., & Abbasi, T. (2015). Vermicomposting of phytomass: Limitations of the past approaches and the emerging directions. Journal of Cleaner Production., 93, 103–114.

    Article  Google Scholar 

  85. Tauseef, S. M., Abbasi, T., Banupriya, D., Vaishnavi, V., & Abbasi, S. A. (2013). HEVSPAR: A novel vermireactor system for treating paper waste. Official journal of the patent. Office, 24, 12726.

    Google Scholar 

  86. Tauseef, S. M., Abbasi, T., Banupriya, G., Banupriya, D., & Abbasi, S. A. (2014). A new machine for clean and rapid separation of vermicast, earthworms and undigested substrate in vermicomposting systems. Journal of Environmental Science and Engineering, 56(4), 495–498.

    Google Scholar 

  87. Hussain, N., Abbasi, T., & Abbasi, S. A. (2017). Enhancement in the productivity of ladies finger (Abelmoschus esculentus) with concomitant pest control by the vermicompost of the weed salvinia(Salvinia molesta, Mitchell). International Journal of Recycling of Organic Waste in Agriculture, 6(4), 335–343.

    Article  Google Scholar 

  88. Hussain, N., Abbasi, T., & Abbasi, S. A. (2018). Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environmental Science and Pollution Research, 25, 4989–5002.

    Article  Google Scholar 

  89. Duke, James, A. (1983). Handbook of energy crops. In: Handbook of energy crops.

    Google Scholar 

  90. Kammathy, R. V. (1968). Salvinia auriculata. Aublet-a rapidlu spreading exotic weed in Kerala. Science Culture, 34, 346.

    Google Scholar 

  91. Mbati, G., & Neuenchwander, P. (2005): Biological control of three floating water weeds, Eichhorniacrassipes, Pistiastratotes and Salvinia molesta in the republic of Congo. Biocontrol, 50, 635–645.

    Google Scholar 

  92. Marshall, B. E., & Junor, F. J. R. (1981). The decline of Salvinia molesta on Lake Kariba. Hydrobiologia, 83(3), 477–484.

    Article  Google Scholar 

  93. Lakra, K. C., Lal, B., & Banerjee, T. K. (2019). Application of phytoremediation technology in decontamination of a fish culture pond fed with coal mine effluent using three aquatic macrophytes. International Journal of Phytoremediation, 21(9), 840–848.

    Google Scholar 

  94. Abbasi, S. A., & Tauseef, S. M. (2018). A system for rapid and inexpensive treatment of sewage using the weed false daisy (Ecliptaprostrata). Water and Environment Journal, 32, 573–584. https://doi.org/10.1111/wej.12355.

  95. Abbasi, S. A., & Tauseef, S. M. (2018). Use of the terrestrialweedAlternantheraficoidea in treating greywater in soil-less SHEFROL® bioreactors. Water Science and Technology, 77(8), 2005–2013.

    Article  Google Scholar 

  96. Abbasi, S. A., & Tauseef, S. M. (2019). Rapid treatment of greywater (household sewage) by terrestrial weed Achyranthesaspera in SHEFROL® reactors. Environmental Progress & Sustainable Energy, 38(2), 467–476. (101002/ep).

    Google Scholar 

  97. Abbasi, S. A., Ponni, G., & Tauseef, S. M. (2018). Marsileaquadrifolia: A new bioagent for treating wastewater. Water Air Soil Pollution, 229(133), 1–8.

    Google Scholar 

  98. Abbasi, S. A., Tabassum-Abbasi, Ponni, G., & Tauseef, S. M. (2019). Potential of joyweedAlternanthera sessilis for rapid treatment of domestic sewage in SHEFROL® bioreactor. International Journal of Phytoremediation, 1–10. https://doi.org/10.1080/15226514.2018.1488814.

Download references

Acknowledgements

SAA thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist grant (21(1034)/16/EMR-II).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabassum-Abbasi, Patnaik, P., Abbasi, T., Abbasi, S.A. (2022). Salvinia (Salvinia Molesta) and Water Hyacinth (Eichhorniacrassipes): Two Pernicious Aquatic Weeds with High Potential in Phytoremediation. In: Siddiqui, N.A., Tauseef, S.M., Abbasi, S.A., Dobhal, R., Kansal, A. (eds) Advances in Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-4400-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4400-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4399-6

  • Online ISBN: 978-981-16-4400-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics