Skip to main content

Advertisement

Log in

Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Utilization of Salvinia molesta, an aquatic weed which is notorious for its allelopathy and invasiveness, has been explored by its vermicomposting. Fourier transform infrared spectroscopy (FT-IR) and plant bioassay tests were conducted to analyze the composition and fertilizer value of S .molesta vermicompost. Germination and seedling growth tests were performed in soil supplemented with vermicompost at levels ranging from 0.75 to 40% by weight of the soil on three common food plants, ladies finger (Abelmoschus esculentus), cucumber (Cucumis sativus), and green gram (Vigna radiata). The influence of S. molesta’s vermicompost on some of the physicochemical and biological attributes of the soil was also studied. FT-IR analysis revealed that S. molesta loses its allelopathy, as the chemical compounds that are responsible for it are largely destroyed, in the course of its vermicomposting. There is also an indication that a portion of lignin content of S. molesta is degraded. Vermicompost enhanced the germination success and promoted the morphological growth and biochemical content of the plant species studied. It also bestowed plant friendly physicochemical and biological attributes to the soil. The findings raise the prospect that billions of tons of S. molesta biomass―which not only goes to waste at present but is also a cause of serious harm to the environment―may become utilizable in organic agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasi SA (1997) Wetlands of India, volume III: Kerala, discovery publishing house New Delhi, xiv + 276 pages

  • Abbasi T, Abbasi SA (2010) Production of clean energy by anaerobic digestion of phytomass - new prospects for a global warming amelioration technology. Renew Sust Energ Rev 14:1653–1659

  • Abbasi T, Abbasi SA (2011) Sources of pollution in rooftop rainwater harvesting systems and their control. Crit Rev Environ Sci Technol 41(23):2097–2167

  • Abbasi SA, Nipaney PC (1986) Infestation by aquatic weeds of the fern genus salvinia—its status and control. Environ Conserv 13(03):235–241. https://doi.org/10.1017/S0376892900036286

    Article  Google Scholar 

  • Abbasi SA, Nayeem-Shah M, Abbasi T (2015) Vermicomposting of phytomass: limitations of the past approaches and the emerging directions. J Clean Prod 93:103–114. https://doi.org/10.1016/j.jclepro.2015.01.024

    Article  Google Scholar 

  • Abbasi SA, Nipaney PC (1984) Generation of biogas from Salvinia molesta (Mitchell) on a commercial biogas digester. Environ Technol Lett 5(1-11):75–80. https://doi.org/10.1080/09593338409384255

    Article  CAS  Google Scholar 

  • Abbasi SA, Nipaney PC (1985) Wastewater treatment using aquatic plants. Survivability and growth of Salvinia molesta (Mitchell) over waters treated with zinc (II) and the subsequent utilization of the harvested weeds for energy (biogas) production. Resour Conserv 12(1):47–55. https://doi.org/10.1016/0166-3097(85)90015-X

    Article  CAS  Google Scholar 

  • Abbasi SA, Nipaney PC (1991) Effect of temperature on biogas production from aquatic fern Salvinia. Indian J Techn 29:306–309

    CAS  Google Scholar 

  • Abbasi SA, Nipaney PC (1993) World’s worst weed (salvinia): its impact and utilization. International book distributors, Dehradun, p 226

    Google Scholar 

  • Abbasi SA, Nipaney PC, Ramasamy EV (1992a) Studies on multi-phase anaerobic digestion of Salvinia. Indian J tech 30:483–490

    CAS  Google Scholar 

  • Abbasi SA, Nipaney PC, Ramasamy EV (1992b) Use of aquatic weed salvinia (Salvinia molesta, Mitchell) as full partial feed in commercial biogas digesters. Indian J Techn 30:451–457

    CAS  Google Scholar 

  • Abbasi SA, Nipaney PC, Schaumberg GD (1990) Bioenergy potential of eight common aquatic weeds. Biological Wastes 34(4):359–366. https://doi.org/10.1016/0269-7483(90)90036-R

    Article  CAS  Google Scholar 

  • Abbasi T, Gajalakshmi S, Abbasi SA (2009) Towards modeling and design of vermicomposting systems: mechanisms of composting/vermicomposting and their implications. Indian J Biot 8:177–182

    Google Scholar 

  • Abbasi T, Tauseef SM, Abbasi SA (2011a) Global warming and the role of wetlands. Lap Lambart Academic, Germany; ISBN 978-3846556009. Xiv+264 pages

  • Abbasi T, Tauseef SM, Abbasi SA (2011b) The inclined parallel stack continuously operable vermireactor. Official Journal of the Patent Office 22:9571

    Google Scholar 

  • Akhzari D, Attaeian B, Arami A, Mahmoodi F, Aslani F (2015) Effects of vermicompost and arbuscular mycorrhizal fungi on soil properties and growth of medicago polymorpha. Compost Science and Utilization 23(3):142–153. https://doi.org/10.1080/1065657X.2015.1013585

    Article  CAS  Google Scholar 

  • Aksakal EL, Sari S, Angin I (2015) Effects of vermicompost application on soil aggregation and certain physical properties. Land Degrad Dev 27:983–995

    Article  Google Scholar 

  • Clewer AG, Scarisbrick DH (2001) Practical statistics and experimental design for plant and crop sciences. John Wiley & Sons Ltd, Indianapolis.

  • AOAC (Association of Official Agricultural Chemists) (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD (2008) Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39(1):91–99. https://doi.org/10.1016/j.apsoil.2007.11.010

    Article  Google Scholar 

  • Arancon NQ, Lee S, Edwards CA, Atiyeh R (2003) Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiologia 47:741–744

    CAS  Google Scholar 

  • Arthur GD, Stirk WA, Novák O, Hekera P, van Staden J (2007) Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Env exp. Botany 61:137–144

    CAS  Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworms-processed organic wastes on plant growth. Bioresour Technol 84(1):7–14. https://doi.org/10.1016/S0960-8524(02)00017-2

    Article  CAS  Google Scholar 

  • Atiyeh RM, Arancon N, Edwards CA, Metzger JD (2000) Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour Technol 75(3):175–180. https://doi.org/10.1016/S0960-8524(00)00064-X

    Article  CAS  Google Scholar 

  • Atiyeh RM, Edwards CA, Subler S, Metzger JD (2001) Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour Technol 78(1):11–20. https://doi.org/10.1016/S0960-8524(00)00172-3

    Article  CAS  Google Scholar 

  • Bashour Issam I and Sayegh Antoine H (2007) Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations

  • Bennett, F. D. 1975. Insects and plant pathogens for the control of Salvinia and Pistia. Pages 28-35 in P.L. Brezonik and].L. Fox, eds. Proc. Symp. Water quality manage. Through BioI. Control., Dept. Environ. Eng. and USEPA, Univ. Florida, Gainesville, FL. 164 pp.

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination. York, Springer Yerlag Berlin Heidelberg New. https://doi.org/10.1007/978-3-642-68643-6

  • Bhat MA (2016) Waste water treatment with a novel clean-green bioreactor SHEFROL. Pondicherry University. Pages X+116

  • Boeriu C, Bravo D, Gosselink R, van Dam J (2004) Characterization of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20(2):205–218. https://doi.org/10.1016/j.indcrop.2004.04.022

    Article  CAS  Google Scholar 

  • Bradford KJ, Hiroyuki N (2006) Seed development, dormancy and germination. Blackwell publishing Ltd, Hoboken

    Google Scholar 

  • Buckerfield JC, Flavel TC, Lee KE, Webster KA (1999) Vermicompost in solid and liquid forms as a plant-growth promoter. Pedobiologia 43:753–759

    Google Scholar 

  • Bykov Ivan (2008) Characterization of natural and technical lignins using FRIR spectroscopy. Master thesis, Lulea University of technology

  • Carter MR, Gregorich EG (2006) Soil sampling and methods of analysis. Canadian society of soil science

  • Chantiratikul P, Meechai P, Nakbanpotec W (2009) Antioxidant activities and phenolic contents of extracts from Salvinia molesta and Eichornia crassipes. Res J Biolo Sci 4:1113–1117

    Google Scholar 

  • Choudhary MI, Naheed N, Abbaskhan A, Musharraf SG, Siddiqui H (2008) Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry 69(4):1018–1023. https://doi.org/10.1016/j.phytochem.2007.10.028

    Article  CAS  Google Scholar 

  • Coates D (1982) Salvinia-possible biological effects on fish in Papua New Guinea? Aqua 4:2

    Google Scholar 

  • Crites RW, Middlebrooks EJ, Bastian RK (2006) Natural wastewater treatment systems. CRC Press

  • Dass A, Lenka NK, Patnaik US, Sudhishri S (2008) Integrated nutrient management for production, economics, and soil improvement in winter vegetables. International journal of vegetable science 14(2):104–120. https://doi.org/10.1080/19315260801934266

    Article  Google Scholar 

  • Derkacheva O, Sukhov D (2008) Investigation of lignins by FTIR spectroscopy. Macromol Symp 265(1):61–68. https://doi.org/10.1002/masy.200850507

    Article  CAS  Google Scholar 

  • Dorahy CG, Pirie AD, McMaster I, Muirhead L, Pengelly P, Chan KY, Jackson M, Barchia IM (2009) Environmental risk assessment of compost prepared from Salvinia, and alligator weed. J env quality 38(4):1483–1492. https://doi.org/10.2134/jeq2007.0555

    Article  CAS  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman RL (2011) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC press; pp. 17-19

  • Edwards Clive A (2004) Earthworm ecology, 2nded.CRC press, Washington

  • El Ouaqoudi FZ, El Fels L, Winterton P, Lemée L, Amblès A, Hafidi M (2014) Study of humic acids during composting of lingo-cellulose waste by infrared spectroscopic and thermogravimetric/thermal differential analysis. Compost Sci Util 22(3):188–198. https://doi.org/10.1080/1065657X.2014.910148

    Article  Google Scholar 

  • Field Andy (2009) Discovering statistics using SPSS. In SAGE Publications London

  • Fileto-Pérez H, Rutiaga-Quiñones J, Aguilar-González C, Páez J, López J, Rutiaga-Qi oñones O (2013) Evaluation of Eichhornia crassipes an alternative raw material for reducing sugars production. Bioresources 8:5340–5348

  • Ganesh PS, Ramasamy EV, Gajalakshmi S, Abbasi SA (2005) Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem Eng J 27(1):17–23

  • Ganeshkumar T, Premalatha M, Gajalakshmi S, Abbasi SA (2014) A new process for the rapid and direct vermicomposting of the aquatic weed salvinia (Salvinia molesta). Bior Biop1 (26): 1–5

  • Gutiérrez-Miceli FA, OlivaLlaven MA, Nazar PM, Sesma BR, Álvarez-Solís JD, Dendooven L (2012) Optimization of vermicompost and worm-bed leachate for the organic cultivation of radish. J Plant Nutr 34:1642–1653

    Article  Google Scholar 

  • Harley KL, Mitchell DS (1981) The biology of Australian weeds, 6. Salvinia molesta DS Mitchell. Journal of the Australian Institute of Agricultural Science (Australia)

  • Hattingh ER (1961) Problem of Salvinia auriculata Aubl. and associated aquatic weeds on Kariba Lake. Weed Res 1(4):303–306. https://doi.org/10.1111/j.1365-3180.1961.tb00030.x

    Article  Google Scholar 

  • Hilhorst HWM and Karssen CM (2000) Effect of chemical environment on seed germination. In seeds: the ecology of regeneration in plant communities, ed. M. Fenner, Wallingford, UK: CABI publishing, pp 293-310

  • Hu J, DekuiShen SW, Zhang H, Xiao R (2014) Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. J Anal Appl Pyrolysis 106:118–124. https://doi.org/10.1016/j.jaap.2014.01.008

    Article  CAS  Google Scholar 

  • Hussain N, Abbasi T, Abbasi SA (2015) Vermicomposting eliminates the toxicity of lantana (Lantana camara) and turns it into a plant friendly organic fertilizer. J Hazard Mater 298:46–57. https://doi.org/10.1016/j.jhazmat.2015.04.073

    Article  CAS  Google Scholar 

  • Hussain N, Abbasi T, Abbasi SA (2016) Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer. J Environ Manag 180:180–189. https://doi.org/10.1016/j.jenvman.2016.05.013

    Article  CAS  Google Scholar 

  • Ievinsh G (2011) Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regulators 65(1):169–181. https://doi.org/10.1007/s10725-011-9586-x

    Article  CAS  Google Scholar 

  • Jones JB (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press Washington

  • Jones JB Jr (2012) Plant nutrition and soil fertility manual. CRC Press, Tylor and Francis group London

    Book  Google Scholar 

  • Jones RL and Stoddart JL (1977) In: the physiology and biochemistry of seed dormancy and germination. Khan AA, (Ed.). Amsterdam: North Holland Publ. Co., pp. 78-109

  • Jouraiphy A, Amir S, El Gharous M, Revel JC, Hafidi M (2005) Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation 56(2):101–108. https://doi.org/10.1016/j.ibiod.2005.06.002

    Article  CAS  Google Scholar 

  • King C, McIntosh D, Fitzsimmons K (2004) Giant Salvinia (Salvinia molesta) as a partial feed for Nile Tilapia (Oreochromis niloticus). InProc. 6th Int. Symp. Tilapia in Agric (pp. 12-16)

  • Klein AP, Beach ES, Emerson JW, Zimmerman JB (2010) Accelerated solvent extraction of lignin from Aleurites moluccana (Candlenut) nutshells. J Agric Food Chem 58(18):10045–10048. https://doi.org/10.1021/jf1019856

    Article  CAS  Google Scholar 

  • Kumar DS, Kumar SP, Rajendran NM, Anbuganapathi G (2013) Compost maturity assessment using physicochemical, solid-state spectroscopy, and plant bioassay analysis. J Agric Food Chem 213:11326–11331

    Article  Google Scholar 

  • Kumar P, Madhuri P, Negia GCS (2009) Soil physico-chemical properties and crop yield improvement following lantana mulching and reduced tillage in rainfed croplands in the Indian Himalayan Mountains. J Sustain Agric 33:636–657

    Article  Google Scholar 

  • Kwabiah AB, Stoskopf NC, Voroney RP, Palm CA (2011) Palm nitrogen and phosphorus release from decomposing leaves under sub-humid tropical conditions. Biotropica 33:229–240

    Article  Google Scholar 

  • Lammatina L, Polacco J (2007) Nitric oxide in plant growth, development and stress physiology. In: Plant cell monographs VI, 283 pages. https://doi.org/10.1007/11563280

    Google Scholar 

  • Lazcano C, Dominguez J (2010) Effects of vermicompost as a potting amendment of two commercially-grown ornamental plant species. Span J Agric Res 8(4):1260–1270. https://doi.org/10.5424/sjar/2010084-1412

    Article  Google Scholar 

  • Lazcano C, Sampedro L, Zas R, Domínguez J (2010) Assessment of plant growth promotion by vermicompost in different progenies of maritime pine (Pinus pinaster Ait.) Compost Science and Utilization 18(2):111–118. https://doi.org/10.1080/1065657X.2010.10736943

    Article  Google Scholar 

  • Leterme P, Londoño AM, Ordoñez DC, Rosales A, Estrada F, Bindelle J, Buldgen A (2010) Nutritional value and intake of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell.) in sows. Ani feed sc tech 55:55–64

    Article  Google Scholar 

  • Li H, Shi A, Li M, Zhang X (2013) Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry 2:2013

    Google Scholar 

  • Li S, Wang P, Deng G, Yuan W, Su Z (2013a) Cytotoxic compounds from invasive giant salvinia (Salvinia molesta) against human tumor cells. Bio medi chem let 23(24):6682–6687. https://doi.org/10.1016/j.bmcl.2013.10.040

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2005) Manual for soil analysis monitoring and assessing soil bioremediation. Soil. Biology 5

  • Martinez-Balmori D, Olivares FL, Spaccini R, Aguiar KP, Araújo MF, Aguiar NO, Guridi F, Canellas LP (2013) Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. J Anal Appl Pyrolysis 104:540–50

  • Mathivanan S, Chidambaram ALA, Sundaramoorthy P, Kalaikandhan R (2012) Effect of vermicompost on germination and biochemical constituents of ground nut (Arachis hypogaea L.) seedling. International Journal of Research in Biological Sciences 2:54–59

    Google Scholar 

  • Mitchell DS (1969) The ecology of vascular hydrophytes on Lake Kariba. Hydrobiologia 34(3-4):448–464. https://doi.org/10.1007/BF00045403

    Article  Google Scholar 

  • Mitchell AF (1974) A field guide to the trees of britain and northern Europe. Collins, London

    Google Scholar 

  • Mitchell DS, Tur NM (1975) The rate of growth of Salvinia molesta (S. auriculata Auct.) in laboratory and natural conditions. J Appl Ecol 1:213–225

    Article  Google Scholar 

  • Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98(1):290–294. https://doi.org/10.1016/j.carbpol.2013.05.038

    Article  CAS  Google Scholar 

  • Moozhiyil M, Pallauf J (1986) Chemical composition of the water fern, Salvinia molesta, and its potential as feed source for ruminants. Econ Bot 40(3):375–383. https://doi.org/10.1007/BF02858995

    Article  CAS  Google Scholar 

  • Oliver JD (1993) A review of the biology of giant salvinia (Salvinia molesta Mitchell). J Aquat Plant Manag 31:227–231

    Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy. Thompson learning, Washington

    Google Scholar 

  • Raju RA, Gangwar B (2004) Utilization of potassium-rich green-leaf manures for rice (Oryza sativa) nursery and their effect on crop productivity. Indian J Agro 49:244–247

    Google Scholar 

  • Ravindran B, Sravani R, Mandal AB, Contreras-Ramos SM, Sekaran G (2013) Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J Therm Anal Calorim 11:1675–1684

    Article  Google Scholar 

  • Reigosa MJ, Souto XC, Gonzalez L (1999) Effect of phenolic compounds on the germination of six weed species. Plant Growth Regulations 28(2):83–88. https://doi.org/10.1023/A:1006269716762

    Article  CAS  Google Scholar 

  • Rizvi SJH, Rizvi V (1992) Allelopathy basic and applied aspects. Chapman and Hall, London

    Google Scholar 

  • Rodŕiguez-Quiroz G, Valenzuela-Quiñónez W and Nava–Pérez E (2011) Vermicomposting as a nitrogen source in germinating kidney bean in trays. J Plant Nutr 34:1418–1423, 10, DOI: https://doi.org/10.1080/01904167.2011.585200

  • Room PM, Gunatilaka GA, Shivanathan P and Fernando IVS (1989) Control of Salvinia molesta in Sri Lanka by Cyrtobagaus salviniae. Pages 285-290 in E.S. Delfosse, ed., Proc. VII Int. Symp. BioI. Contr. Weeds, 1st. Spero Patol. Veg., Rome, Italy

  • Room PM, Harley KLS, Forno IW, Sands DPA (1981) Successful biological control of the floating weed salvinia. Nature 294(5836):78–80. https://doi.org/10.1038/294078a0

    Article  Google Scholar 

  • Sculthorpe CD (1985) The biology of aquatic vascular plants. Koeltz Scientific Books, Königstein

  • Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326(5953):716–718. https://doi.org/10.1126/science.1174760

    Article  CAS  Google Scholar 

  • Smidt E, Meissl K (2007) The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag 27:268–276

    Article  CAS  Google Scholar 

  • Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013a) Methane capture from livestock manure. J Environ Manag 117:187–207

  • Tauseef SM, Abbasi T, Banupriya D, Vaishnavi V, Abbasi SA (2013b) HEVSPAR: a novel vermireactor system for treating paper waste. Official journal of the patent. Office 24:12726

    Google Scholar 

  • Tauseef SM, Abbasi T, Banupriya G, Banupriya D, Abbasi SA (2014) A new machine for clean and rapid separation of vermicast, earthworms, and undigested substrate in vermicomposting systems. J Environ Sci Eng 56:495–498

    CAS  Google Scholar 

  • Teh CY, Wu TY, Juan JC (2014) Potential use of rice starch in coagulation-flocculation process of agro-industrial wastewater: treatment performance and flocs characterization. Ecol Eng 71:509–519. https://doi.org/10.1016/j.ecoleng.2014.07.005

    Article  Google Scholar 

  • Tejada M, Gómez I, Hernández T, García C (2010) Utilization of vermicomposts in soil restoration: effects on soil biological properties. Soil Sci Soc Am J 74(2):525–532. https://doi.org/10.2136/sssaj2009.0260

    Article  CAS  Google Scholar 

  • Wang L, Luo X, Zhang Y, Chao J, Gao Y, Zhang J, Zheng Z (2013) Community analysis of ammonia-oxidizing Betaproteobacteria at different seasons in microbial-earthworm ecofilters. Ecol Eng 51:1–9. https://doi.org/10.1016/j.ecoleng.2012.12.062

    Article  Google Scholar 

  • Wang L, Zheng Z, Luo X, Zhang J (2011) Performance and mechanisms of a microbial earthworm ecofilter for removing organic matter and nitrogen from synthetic domestic wastewater. J Hazard Mater 195:245–253. https://doi.org/10.1016/j.jhazmat.2011.08.035

    Article  CAS  Google Scholar 

  • Wilson DP, Carlile WR (1989) Plant growth in potting media containing worm-worked duck waste. Acta Hortic 238:205–220

    Article  Google Scholar 

  • Xu R, Yang Y, Weimin Z (2012) Introduction to natural products chemistry. CRC press, Washington, New York

    Google Scholar 

  • Xu Y, Zhang J and Li F (2010) Germination, growth and rhizosphere effect of Setaria viridis grown in iron mine tailings. 4th international conference on bioinformatics and biomedical engineering, iCBBE

  • Yang J, Baoyi LV, Zhang J, Xing M (2014) Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods. Bioresour Technol 154:94–100. https://doi.org/10.1016/j.biortech.2013.12.023

    Article  CAS  Google Scholar 

  • Zaller JG (2007) Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hortic 112(2):191–199. https://doi.org/10.1016/j.scienta.2006.12.023

    Article  Google Scholar 

  • Zhang J, Xu Y and Li F (2009) Influence of cow manure vermicompost on plant growth and microbes in rhizosphere on iron tailing, 3rd international conference on bioinformatics and biomedical engineering, iCBBE

Download references

Acknowledgements

SAA thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist grant (21(1034)/16/EMR-II). NH thanks the UGC for the Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Abbas Abbasi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, N., Abbasi, T. & Abbasi, S.A. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta . Environ Sci Pollut Res 25, 4989–5002 (2018). https://doi.org/10.1007/s11356-017-0826-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0826-0

Keywords

Navigation