Skip to main content

Viral Diseases of Wheat: Research Progress and Future Perspectives

  • Chapter
  • First Online:
New Horizons in Wheat and Barley Research
  • 521 Accesses

Abstract

Viruses represent an important threat to sustainable wheat production throughout the globe. More than 10 different viruses have been documented as natural hosts of Triticum spp. Several research efforts have been made to get deep insight into the ecology, biology and epidemiology of the diseases incited by viruses and their vectors. Several research initiatives have been made to develop accurate and precise diagnostic assays with an aim to provide timely and accurate management actions to the wheat growers. Different measures such as wide rotations including non-host crops, chemical control of vectors and alterations in sowing time have been identified as the promising options. Resistant cultivars are the most cost-effective and environment-friendly approach and are a prerequisite for any sustainable wheat production system. In this context, several potential sources for resistance and genes have also been identified in wide relatives of wheat, not only to the virus but also against the insect vector. Recent innovations in the usage of genomic tools in the field of wheat science also accelerated the process of isolation and identification of resistance genes, which, in turn, facilitated the detection of new and more efficient alleles along with their genetic deployment to impart resistance against viruses. In this chapter, attempts are made to provide the recent updates on wheat viruses, their symptomatology, economic loss and disease management from a global perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JM, Bucholtz DL, Greene AE, Francki MG, Gray SM, Sharma H, Ohm HW, Perry KL (1998) Characterization of wheatgrass-derived barley yellow dwarf virus resistance in a wheat alien chromosome substitution line. Phytopathology 88(8):851–855

    Article  CAS  PubMed  Google Scholar 

  • Appel J, DeWolf E, Bockus W, Todd T (2014) Preliminary 2014 Kansas wheat disease loss estimates. Kansas Cooperative plant disease survey report. Kansas Department of Agriculture, Topeka, KS. http://agriculture.ks.gov/docs/default-source/PP-Disease-Reports-2014/2014-ks-wheat-disease-loss-estimates.pdf

  • Atkinson TG, Grant MN (1967) An evaluation of streak mosaic losses in winter wheat. Phytopathology 57(2):188–192

    Google Scholar 

  • Ayala L, Henry M, Gonzalez-de-Leon D, Van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M (2001) A diagnostic molecular marker allowing the study of Th. Intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet 102(6):942–949

    Article  CAS  Google Scholar 

  • Ayala-Navarrete LI, Mechanicos AA, Gibson JM, Singh D, Bariana HS, Fletcher J, Shorter S, Larkin PJ (2013) The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor Appl Genet 126(10):2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Chen RIS, Xu HJ, Xin ZY, Qian YT, Zhou XM, Cheng ZM (1995) The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38:395–405. https://doi.org/10.1139/g95-051

    Article  CAS  PubMed  Google Scholar 

  • Banks PM, Larkin PJ, Kammholz SJ (1996) Barley yellow dwarf virus resistant wheat breeding germplasm. Abstracts, 5th Int Wheat Conf. 1014.

    Google Scholar 

  • Barloy D, Etienne C, Lemoine J, Saint Ouen Y, Jahier J, Banks PM, Trottet M (2003) Comparison of TAF46 and Zhong 5 resistances to barley yellow dwarf virus from Thinopyrum intermedium in wheat. Euphytica 129(3):361–369

    Article  CAS  Google Scholar 

  • Bisztray G, Gaborjanyi R, Vacke J (1989) Isolation and characterisation of wheat dwarf virus found for the first time in Hungary/Isolation und Identifizierung des wheat dwarf virus, erstmals gefunden in Ungarn. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J Plant Dis Protect 5:449–454

    Google Scholar 

  • Bockus WW, Appel JA, Bowden RL, Fritz AK, Gill BS, Martin TJ, Seifers DL, Brown-Guedira GL, Eversmeyer MG (2001) Success stories: breeding for wheat disease resistance in Kansas. Plant Dis 85:453–461

    Article  PubMed  Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests, 3rd edn. The American Phytopathological Society, St. Paul, MN

    Book  Google Scholar 

  • Byamukama E, Tatineni S, Hein GL, Graybosch RA, Baenziger PS, French R, Wegulo SN (2012) Effects of single and double infections of winter wheat by Triticum mosaic virus and wheat streak mosaic virus on yield determinants. Plant Dis 96(6):859–864

    Article  CAS  PubMed  Google Scholar 

  • Caetano VR (1982) Mosaico do trigo transmitido pelo solo ‘wheat soilborne mosaic virus’ Tobamovirus. In: Osório EA (ed) Trigo no Brazil, vol 2. Fundação Cargill, Campinas, SP, pp 563–570

    Google Scholar 

  • Chain F, Riault G, Jacquot E, Trottet M (2006) Field trial of serially passaged isolates of BYDV-PAV overcoming resistance derived from Thinopyrum intermedium in wheat. Plant Breed 125(3):211–216

    Article  Google Scholar 

  • Chain F, Riault G, Trottet M, Jacquot E (2005) Characterization of two sources of tolerance/resistance to barley yellow dwarf virus-PAV (BYDV-PAV) in wheat and estimation of their durability using serial passage experiment procedures. Parasitica 61(1):41–46

    Google Scholar 

  • Chalupniková J, Kundu JK, Singh K, Bartaková P, Beoni E (2017) Wheat streak mosaic virus: incidence in field crops, potential reservoir within grass species and uptake in winter wheat cultivars. J Integr Agric 16(3):523–531

    Article  Google Scholar 

  • Chen JP (2005) Research status and prospect of cereal viruses transmitted by Polymyxa graminis in China. Proc Natural Sci 15:524–533

    Google Scholar 

  • Chen M, Sun L, Wu H, Chen J, Ma Y, Zhang X, Du L, Cheng S, Zhang B, Ye X, Pang J (2014) Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnol J 12(4):447–456

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Wu M, He X, Xu L, Zhou G, Waterhouse PM (2002) Nucleotide sequence analysis of the BYDV-GPV isolate genome, and transgenic wheat obtained via pollen tube pathway. In: Barley yellow dwarf disease: recent advances and future strategies, vol 1. CIMMYT, Mexico, D.F, p 29

    Google Scholar 

  • Choi IR, Horken KM, Stenger DC, French R (2002) Mapping of the P1 proteinase cleavage site in the polyprotein of wheat streak mosaic virus (genus Tritimovirus). J Gen Virol 83(2):443–450

    Article  CAS  PubMed  Google Scholar 

  • Christian ML, Willis WG (1993) Survival of wheat streak mosaic virus in grass hosts in Kansas for wheat harvest to fall wheat emergence. Plant Dis 77(3):239–242

    Article  Google Scholar 

  • Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci 105(15):5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clover G, Henry C (1999) Detection and discrimination of wheat spindle streak mosaic virus and wheat yellow mosaic virus using multiplex RT-PCR. Eur J Plant Pathol 105(9):891–896

    Article  CAS  Google Scholar 

  • Coceano PG, Peressini S, Bianchi GL, Caciagli P (2009) Long-term changes of aphid vectors of barley yellow dwarf viruses in North-Eastern Italy (Friuli-Venezia Giulia). Ann Appl Biol 155(1):37–50

    Article  Google Scholar 

  • Commandeur U, Huth W (1999) Differentiation of strains of wheat dwarf virus in infected wheat and barley plants by means of polymerase chain reaction/Differenzierung von Stämmen des wheat dwarf virus in infizierten Pflanzen von Weizen und Gerste mittels polymerase chain reaction. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J Plant Dis Protection 106:550–552

    Google Scholar 

  • Coutts BA, Strickland GR, Kehoe MA, Severtson DL, Jones RA (2008) The epidemiology of wheat streak mosaic virus in Australia: case histories, gradients, mite vectors, and alternative hosts. Aust J Agr Res 59(9):844–853

    Article  Google Scholar 

  • Cunfer BM, Demski JW, Bays DC (1988) Reduction in plant development, yield, and grain quality associated with wheat spindle streak mosaic virus. Phytopathology 78:198–204

    Article  Google Scholar 

  • Dewar AM, Foster SP (2017) Overuse of pyrethroids may be implicated in the recent BYDV epidemics in cereals. Outlooks Pest Manage 28(1):7–12

    Article  Google Scholar 

  • Dráb T, Svobodová E, Ripl J, Jarošová J, Rabenstein F, Melcher U, Kundu JK (2014) Green I based RT-qPCR assays for the detection of RNA viruses of cereals and grasses. Crop Pasture Sci 65(12):1323–1328

    Article  CAS  Google Scholar 

  • Dupré P, Henry M, Posadas G, Pellegrineschi A, Trottet M, Jacquot E (2002) Genetically engineered wheat for barley yellow dwarf virus resistance. In: Henry M, McNab A (eds) Barley yellow dwarf disease: recent advances and future strategies. CIMMYT, Mexico, pp 27–28

    Google Scholar 

  • Ekzayez AM, Kumari SG, Ismail I (2011) First report of wheat dwarf virus and Its vector (Psammotettix provincialis) affecting wheat and Barley Crops in Syria. Plant Dis 95(1):76. https://doi.org/10.1094/PDIS-09-10-0628

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Larkin PJ, Haber S, Shorter S, Lonergan PF, Rosewarne GM (2012) Effectiveness of three potential sources of resistance in wheat against wheat streak mosaic virus under field conditions. Australas Plant Pathol 41(3):301–309

    Article  CAS  Google Scholar 

  • Francki MG, Ohm HW, Anderson JM (2001) Novel germplasm providing resistance to barley yellow dwarf virus in wheat. Aust J Agr Res 52(12):1375–1382

    Article  CAS  Google Scholar 

  • French R, Stenger DC (2002) Wheat streak mosaic virus. In: CMI/AAB descriptions of plant viruses. Association of Applied Biologists, Wellesbourne, Warwickshire, p 398

    Google Scholar 

  • Fritts DA, Michels GJ Jr, Rush CM (1999) The effects of planting date and insecticide treatments on the incidence of high plains disease in corn. Plant Dis 83(12):1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Tamura M, Maejima H, Takahashi R, Kuwayama S, Tsuji T, Yoshida T, Itoh K, Hashizume H, Nakajima Y, Uehara Y (2013) Differential detection of wheat yellow mosaic virus, Japanese soil-borne wheat mosaic virus and Chinese wheat mosaic virus by reverse transcription loop-mediated isothermal amplification reaction. J Virol Methods 189(2):348–354

    Article  CAS  PubMed  Google Scholar 

  • Gadiou S, Kudela O, Ripl J, Rabenstein F, Kundu JK, Glasa M (2009) An amino acid deletion in wheat streak mosaic virus capsid protein distinguishes a homogeneous group of European isolates and facilitates their specific detection. Plant Dis 93(11):1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Gates LF (1986) Incidence of wheat spindle streak mosaic in Essex, Kent and Lambton counties, Ontario, 1973–81. Can Plant Dis Surv 66(1):1–3

    Google Scholar 

  • Geng B, Han CG, Zhai YF, Wang HQ, Yu JL, Liu Y (2003) Detection of wheat yellow mosaic virus by heterogeneous animal double-antibody sandwich ELISA. Virol Sin 18(1):76–78

    CAS  Google Scholar 

  • Geng G, Yu C, Li X, Yuan X (2019) Variable 3′polyadenylation of wheat yellow mosaic virus and its novel effects on translation and replication. Virol J 16(1):1–8

    Article  Google Scholar 

  • Ginkel MV, Henry M (2002) Breeding for BYDV tolerance/resistance in CIMMYT bread wheats targeted to developing countries. Barley yellow dwarf disease: recent advances and future strategies. In: Henry A, Nab MM (eds) Barley yellow dwarf disease: recent advances and future strategies. CIMMYT, Mexico, DF

    Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987

    Article  Google Scholar 

  • Gourmet C, Kolb FL, Smyth CA, Pedersen WL (1996) Use of imidacloprid as a seed-treatment insecticide to control barley yellow dwarf virus (BYDV) in oat and wheat. Plant Dis 80(2):136–141

    Article  CAS  Google Scholar 

  • Graybosch RA, Peterson CJ, Baenziger PS, Baltensperger DD, Nelson LA, Jin Y, Kolmer J, Seabourn B, French R, Hein G, Martin TJ (2009) Registration of ‘Mace’ hard red winter wheat. J Plant Registr 3(1):51–56

    Article  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cellular Molec Life Sci CMLS 56(3):313–329

    Article  CAS  Google Scholar 

  • Hadi BA, Langham MA, Osborne L, Tilmon KJ (2011) Wheat streak mosaic virus on wheat: biology and management. J Integr Pest Manage 2(1):J1–J5

    Article  Google Scholar 

  • Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Heaton EE, Seifert SA, Kottke RA, Rudolph JB, Martin TJ, Bai G, Chen X (2011) Registration of ‘Snowmass’ wheat. J Plant Registr 5(1):87–90

    Article  Google Scholar 

  • Han C, Li D, Xing Y, Zhu K, Tian Z, Cai Z, Yu J, Liu Y (2000) Wheat yellow mosaic virus widely occurring in wheat (Triticum aestivum) in China. Plant Dis 84(6):627–630

    Article  PubMed  Google Scholar 

  • Hansing ED, Melcher LE, Fellows H, Johnston CO (1950) Kansas phytopathological notes: 1949. Trans Kans Acad Sci 53:344–354

    Article  Google Scholar 

  • Hariri D, Delaunay T, Gomes L, Filleur S, Plovie C, Lapierre H (1996) Comparison and differentiation of wheat yellow mosaic virus (WYMV), wheat spindle streak mosaic virus (WSSMV) and barley yellow mosaic virus (BaYMV) isolates using WYMV monoclonal antibodies. Eur J Plant Pathol 102(3):283–292

    Article  Google Scholar 

  • Harvey TL, Seifers DL, Martin TJ, Brown-Guedira G, Gill BS (1999) Survival of wheat curl mites on different sources of resistance in wheat. Crop Sci 39(6):1887–1889

    Article  Google Scholar 

  • Herbert DA Jr, Stromberg EL, Chappell GF, Malone SM (1999) Reduction of yield components by barley yellow dwarf infection in susceptible winter wheat and winter barley in Virginia. J Prod Agric 12(1):105–109

    Article  Google Scholar 

  • Hunger RM, Sherwood JL, Evans CK, Montana JR (1992) Effects of planting date and inoculation date on severity of wheat streak mosaic in hard red winter wheat cultivars. Plant Dis 76(10):1056–1060

    Article  Google Scholar 

  • Inouye T (1969) Viral pathogen of the wheat yellow mosaic disease. Nogaku Kenkyu 53:61–68

    Google Scholar 

  • Isleib J (2015) Management suggestions for barley yellow dwarf virus control. Michigan State University Extension. August 2015. http://msue.anr.msu.edu/news/management_suggestions_for_barley_yellow_dwarf_virus_control. Accessed 30 Jan 2020.

  • Izzo MM, Kirkland PD, Gu X, Lele Y, Gunn AA, House JK (2012) Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia. Aust Vet J 90:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahier J, Chain F, Barloy D, Tanguy AM, Lemoine J, Riault G, Margale E, Trottet M, Jacquot E (2009) Effect of combining two genes for partial resistance to barley yellow dwarf virus-PAV (BYDV-PAV) derived from Thinopyrum intermedium in wheat. Plant Pathol 58(5):807–814

    Article  Google Scholar 

  • Jarošová J, Beoni E, Kundu JK (2016) Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crop Res 198:200–214

    Article  Google Scholar 

  • Jones RA (2021) Global plant virus disease pandemics and epidemics. Plan Theory 10(2):233

    CAS  Google Scholar 

  • Jones RA, Salam MU, Maling TJ, Diggle AJ, Thackray DJ (2010) Principles of predicting plant virus disease epidemics. Annu Rev Phytopathol 48:179–203

    Article  CAS  PubMed  Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4(5):393–406

    Article  CAS  PubMed  Google Scholar 

  • Kapooria RG, Ndunguru J (2004) Occurrence of viruses in irrigated wheat in Zambia. EPPO Bull 34(3):413–419

    Article  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Nanoscience in food and agriculture. Springer, Cham, pp 253–276

    Chapter  Google Scholar 

  • Kaur SI, Kashyap PL, Kang SS, Sharma A (2020) Detection and diagnosis of seed-borne viruses and virus-like pathogens. In: Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore, pp 169–199

    Chapter  Google Scholar 

  • Kelley KW (2001) Planting date and foliar fungicide effects on yield components and grain traits of winter wheat. Agron J 93(2):380–389

    Article  Google Scholar 

  • Kennedy TF, Connery J (2012) Control of barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals by insecticide seed and foliar spray treatments. J Agric Sci 150(2):249

    Article  CAS  Google Scholar 

  • King AM, Lefkowitz E, Adams MJ, Carstens EB (2011) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, Amsterdam

    Google Scholar 

  • Kong L, Anderson JM, Ohm HW (2009) Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breed 128:591–597

    Article  CAS  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1):e29268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharek T, Walker JH (1974) The presence of and damage caused by soilborne wheat mosaic virus in Florida. Plant Dis Rep 58:763–765

    Google Scholar 

  • Kühne T (2009) Soil-borne viruses affecting cereals—known for long but still a threat. Virus Res 141(2):174–183

    Article  PubMed  CAS  Google Scholar 

  • Kundu JK, Gadiou S, Červená G (2009) Discrimination and genetic diversity of wheat dwarf virus in the Czech Republic. Virus Genes 38(3):468–474

    Article  CAS  PubMed  Google Scholar 

  • Kuribayashi K (1919) Wheat yellow disease in Hokkaido. Byougaicyu Zasshi 8:118–120

    Google Scholar 

  • Langham MA, Doxtader DC, Haley SD, Kalsbeck S, Little RS, Ibrahim AM (2001a) Yield and growth reductions in winter wheat infected with wheat streak mosaic virus. Phytopathology 91:S52

    Google Scholar 

  • Langham MAC, Haley SD, Doxtader DC, Kalsbeck S, Little RS (2001b) Evaluation of winter wheat cultivars and lines for wheat streak mosaic tritimovirus resistance or tolerance. Phytopathology 91:S178–S179

    Google Scholar 

  • Lanoiselet VM, Hind-Lanoiselet TL, Murray GM (2008) Studies on the seed transmission of wheat streak mosaic virus. Australas Plant Pathol 37(6):584–588

    Article  Google Scholar 

  • Larkin PJ, Brettell RI, Banks P, Appels R, Waterhouse PM, Cheng ZM, Zhou GH, Xin ZY, Chen X (1990) Identification, characterization, and utilization of sources of resistance to barley yellow dwarf virus. Plant Pathol 58(5):807–814

    Google Scholar 

  • Larkin PJ, Banks PM, Lagudah ES, Appels R, Xiao C, Zhiyong X, Ohm HW, McIntosh RA (1995) Disomic Thinopyrum intermedium addition lines in wheat with Barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Kleven S, Banks PM (2002) Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. In: Henry M, McNab A (eds) Barley yellow dwarf diseases: recent advances and future strategies. CIMMYT, Mexico DF, Mexico, pp 60–63

    Google Scholar 

  • Lebas BS, Ochoa-Corona FM, Alexander BJ, Lister RA, Fletcher JD, Bithell SL, Burnip GM (2009a) First report of wheat streak mosaic virus on wheat in New Zealand. Plant Dis 93(4):430

    Article  CAS  PubMed  Google Scholar 

  • Lebas BS, Ochoa-Corona FM, Elliott DR, Tang J, Blouin AG, Timudo OE, Ganev S, Alexander BJ (2009b) Investigation of an outbreak of soil-borne wheat mosaic virus in New Zealand. Australas Plant Pathol 38(1):85–90

    Article  CAS  Google Scholar 

  • Lee S, Kim JH, Choi JY, Jang WC (2015) Loop-mediated isothermal amplification assay to rapidly detect wheat streak mosaic virus in quarantined plants. Plant Pathol J 31(4):438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Huang D, Du L, Ye XG, Xin Z (2006) Identification of wheat- Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Plant Breed 125:114–119

    Article  CAS  Google Scholar 

  • Lindblad M, Waern P (2002) Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric Ecosyst Environ 92(2–3):115–122

    Article  Google Scholar 

  • Liu C, Suzuki T, Mishina K, Habekuss A, Ziegler A, Li C, Sakuma S, Chen G, Pourkheirandish M, Komatsuda T (2016) Wheat yellow mosaic virus resistance in wheat cultivar Madsen acts in roots but not in leaves. J Gen Plant Pathol 82(5):261–267

    Article  CAS  Google Scholar 

  • Liu W, Nie H, Wang S, Li X, He Z, Han C, Wang J, Chen X, Li L, Yu J (2005) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111(4):651–657

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhao X, Zhang P, Mar TT, Liu Y, Zhang Z, Han C, Wang X (2013) A one step real-time RT-PCR assay for the quantitation of wheat yellow mosaic virus (WYMV). Virol J 10(1):1–9

    Article  CAS  Google Scholar 

  • Liu Y, Jin W, Wang L, Wang X (2014) Replication-associated proteins encoded by wheat dwarf virus act as RNA silencing suppressors. Virus Res 190:34–39

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu Y, Spetz C, Li L, Wang X (2020) Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phytohormone and photosynthesis metabolism pathways. Phytopathol Res 2(1):1–3

    Article  CAS  Google Scholar 

  • Lu H, Price J, Devkota R, Rush C, Rudd J (2011) A dominant gene for resistance to wheat streak mosaic virus in winter wheat line CO960293-2. Crop Sci 51:5–12

    Article  Google Scholar 

  • Makkouk KM, Ghulam W, Comeau A (1994) Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci 74(3):631–634

    Article  Google Scholar 

  • Mann SK, Kashyap PL, Sanghera GS, Singh G, Singh S (2008) RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2(2):110–126

    Google Scholar 

  • Martin TJ, Zhang G, Fritz AK, Miller R, Chen MS (2014) Registration of ‘Clara CL’wheat. J Plant Registr 8(1):38–42

    Article  Google Scholar 

  • McKinney HH (1937) Mosaic diseases of wheat and related cereals. US Department of Agriculture, Washington

    Google Scholar 

  • McKirdy SJ, Jones RA (1996) Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Dis 80(8):895–901

    Article  CAS  Google Scholar 

  • McMechan AJ, Hein GL (2016) Planting date and variety selection for management of viruses transmitted by the wheat curl mite (Acari: Eriophyidae). J Econ Entomol 109(1):70–77

    Article  PubMed  Google Scholar 

  • Miller NR, Bergstrom GC, Sorrels ME (1992) Effect of wheat spindle streak mosaic virus on winter wheat in New York. Phytopathology 82:852–857

    Article  Google Scholar 

  • Miller WA, Rasochová L (1997) Barley yellow dwarf viruses. Annu Rev Phytopathol 35(1):167–190

    Article  CAS  PubMed  Google Scholar 

  • Myers LD, Sherwood JL, Siegerist WC, Hunger RM (1993) Temperature-influenced virus movement in expression of resistance to soilborne wheat mosaic virus in hard red winter wheat (Triticum aestivum). Phytopathology 83:548–551

    Article  Google Scholar 

  • Najar A, Makkouk KM, Boudhir H, Othman FB, Zarouk R, Bessai R, Kumari SG (2000) Viral diseases of cultivated legume and cereal crops in Tunisia. Phytopathologia Mediterranea 39:1–10

    Google Scholar 

  • Namba S, Kashiwazaki S, Lu X, Tamura M, Tsuchizaki T (1998) Complete nucleotide sequence of wheat yellow mosaic bymovirus genomic RNAs. Arch Virol 143(4):631–643

    Article  CAS  PubMed  Google Scholar 

  • Nancarrow N, Aftab M, Hollaway G, Rodoni B, Trębicki P (2021) Yield losses caused by barley yellow dwarf virus-PAV infection in wheat and barley: a three-year field study in south-eastern Australia. Microorganisms 9(3):645

    Article  PubMed  PubMed Central  Google Scholar 

  • Nancarrow N, Constable FE, Finlay KJ, Freeman AJ, Rodoni BC, Trebicki P, Vassiliadis S, Yen AL, Luck JE (2014) The effect of elevated temperature on barley yellow dwarf virus-PAV in wheat. Virus Res 186:97–103

    Article  CAS  PubMed  Google Scholar 

  • Navia D, de Mendonça RS, Skoracka A, Szydło W, Knihinicki D, Hein GL, da Silva Pereira PR, Truol G, Lau D (2013) Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops. Exp Appl Acarol 59(1):95–143

    Article  PubMed  Google Scholar 

  • Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M, Yamauchi H, Murray TD (2010) Mapping a gene conferring resistance to wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’(Triticum aestivum L.). Euphytica 176(2):223–229

    Article  CAS  Google Scholar 

  • Oswald JW, Houston BE (1953) The yellow-dwarf virus disease of cereal crops. Phytopathology 43(3):128–136

    Google Scholar 

  • Prestes AM, Wietholter S (1993) Efeito da virosa do mosaic no rendimento da biomassa de cultivares de trigo. Fitopatol Bras 18:293

    Google Scholar 

  • Pribék D, Pocsai E, Vida G, Veisz (2006) Presence of wheat dwarf virus, cereal yellow dwarf virus-RPV and barley yellow dwarf viruses in cereal species in Martonvasar. Cereal Res Commun 34(1):625–628

    Article  Google Scholar 

  • Price JA, Workneh F, Evett SR, Jones DC, Arthur J, Rush CM (2010) Effects of Wheat streak mosaic virus on root development and water-use efficiency of hard red winter wheat. Plant Dis 94(6):766–770

    Article  CAS  PubMed  Google Scholar 

  • Qin JZ, Li ZM, Tao JF, Qin Y (1986) Primary study on resistance inheritance to yellow mosaic disease of wheat. J Sichuan Agric Univ 4:17–28

    Google Scholar 

  • Rabenstein F, Seifers DL, Schubert J, French R, Stenger DC (2002) Phylogenetic relationships, strain diversity and biogeography of tritimoviruses. J Gen Virol 83(4):895–906

    Article  CAS  PubMed  Google Scholar 

  • Richardson K, Miller AD, Hoffmann AA, Larkin P (2014) Potential new sources of wheat curl mite resistance in wheat to prevent the spread of yield-reducing pathogens. Exp Appl Acarol 64(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123(1):69

    Article  CAS  PubMed  Google Scholar 

  • Riedell WE, Kieckhefer RW, Haley SD, Langham MAC, Evenson PD (1999) Winter wheat responses to bird cherry-oat aphids and barley yellow dwarf virus infection. Crop Sci 39:158–163

    Article  Google Scholar 

  • Royer TA, Giles KL, Nyamanzi T, Hunger RM, Krenzer EG, Elliott NC, Kindler SD, Payton M (2005) Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J Econ Entomol 98(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Rubies-Autonell C, Vallega V, Ratti C (2003) Reactions of cultivars of common wheat (Triticum aestivum L.) to soil-borne wheat mosaic virus in northern Italy. J Plant Dis Prot 110:332–336

    Google Scholar 

  • Sanghera GS, Wani SH, Gill MS, Kashyap PL, Gosal SS (2010) RNA interference: its concept and application in crop plants. In: Malik CP, Verma A (eds) Biotechnology cracking new pastures. MD Publications, New Delhi, pp 33–78

    Google Scholar 

  • Saulescu NN, Ittu G, Ciuca M, Ittu M, Serban G, Mustatea P (2011) Transferring useful rye genes to wheat, using triticale as a bridge. Czech J Genet Plant Breed 47:56–62

    Article  Google Scholar 

  • Schubert J, Ziegler A, Rabenstein F (2015) First detection of wheat streak mosaic virus in Germany: molecular and biological characteristics. Arch Virol 160(7):1761–1766

    Article  CAS  PubMed  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Haber S, Haley SD (2006) Temperature sensitive and efficacy of wheat streak mosaic virus resistance derived from CO960293 wheat. Plant Dis 90:623–628

    Article  CAS  PubMed  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Fellers JP, Michaud JP (2009) Identification of the wheat curl mite as the vector of Triticum mosaic virus. Plant Dis 93(1):25–29

    Article  PubMed  Google Scholar 

  • Seifers DL, Haber S, Martin TJ, Zhang G (2013) New sources of temperature sensitive resistance to wheat streak mosaic virus in wheat. Plant Dis 97:1051–1056

    Article  PubMed  Google Scholar 

  • Sharma H, Francki M, Crasta O, Gyulai G, Bucholtz D, Ohm H, Anderson J, Perry K, Patterson F (1999) Cytological and molecular characterization of wheat lines with Thinopyrum intermedium chromosome additions, substitutions and translocations resistant to barley yellow dwarf virus. Cytologia 64(1):93–100

    Article  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38(2):406–413

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Rai P, Rai S, Srivastava M, Kashyap PL, Sharma A, Kumar S (2017) Genomic revolution in crop disease diagnosis: a review. In: Plants and microbes in an ever changing environment. Nova Science Publishers, Hauppauge, pp 257–293

    Google Scholar 

  • Singh K, Kundu J (2017) Variations in coat protein sequence of Wheat streak mosaic virus among crop and non-crop hosts. Crop Pasture Sci 68(4):328–336

    Article  CAS  Google Scholar 

  • Singh K, Wegulo SN, Skoracka A, Kundu JK (2018) Wheat streak mosaic virus: a century old virus with rising importance worldwide. Mol Plant Pathol 19(9):2193–2206

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Burnett PA, Albarran M, Rajaram S (1993) Bdv1: a gene for tolerance to barley yellow dwarf virus in bread wheats. Crop Sci 33(2):231–234

    Article  Google Scholar 

  • Širlová LE, Vacke JO, Chaloupková M (2005) Reaction of selected winter wheat varieties to autumnal infection with Wheat dwarf virus. Plant Prot Sci 41:1–7

    Google Scholar 

  • Slykhuis JT, Andrews JE, Pittman UJ (1957) Relation of date of seeding winter wheat in southern Alberta to losses from wheat streak mosaic, root rot, and rust. Can J Plant Sci 37(2):113–127

    Article  Google Scholar 

  • Smith PR, Sward RJ (1982) Crop loss assessment studies on the effects of barley yellow dwarf virus in wheat in Victoria. Aust J Agr Res 33(2):179–185

    Article  Google Scholar 

  • Staples R, Allington WB (1956) Streak mosaic of wheat in Nebraska and its control. University of Nebraska, Lincoln

    Google Scholar 

  • Stenger DC, Hall JS, Choi IR, French R (1998) Phylogenetic relationships within the family Potyviridae: wheat streak mosaic virus and brome streak mosaic virus are not members of the genus Rymovirus. Phytopathology 88(8):782–787

    Article  CAS  PubMed  Google Scholar 

  • Stoutjesdijk P, Kammholz SJ, Kleven S, Matsay S, Banks PM, Larkin PJ (2001) PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of Barley yellow dwarf virus resistance in wheat. Crop Pasture Sci 52(12):1383–1388

    Article  CAS  Google Scholar 

  • Suzuki N, Sasaya T, Choi IR (2015) Viruses threatening stable production of cereal crops. Front Microbiol 6:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Munekata S, Suzuki T, Senda K, Horita H, Araki K, Asayama S, Sato M (2010) Breeding wheat lines resistant to wheat yellow mosaic virus and localization of the resistance gene (YmMD) derived from wheat cultivar 'Madsen'. Breeding Res 12(1):1–8

    Article  Google Scholar 

  • Tatineni S, Elowsky C, Graybosch RA (2017) Wheat streak mosaic virus coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts. Mol Plant Microbe Interact 30(12):974–983

    Article  CAS  PubMed  Google Scholar 

  • Tatineni S, Graybosch RA, Hein GL, Wegulo SN, French R (2010) Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus. Phytopathology 100(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Thomas JB, Conner RL, Graf RJ (2004) Comparison of different sources of vector resistance for controlling wheat streak mosaic in winter wheat. Crop Sci 44(1):125–130

    Article  Google Scholar 

  • Trębicki P, Nancarrow N, Cole E, Bosque-Pérez NA, Constable FE, Freeman AJ, Rodoni B, Yen AL, Luck JE, Fitzgerald GJ (2015) Virus disease in wheat predicted to increase with a changing climate. Glob Chang Biol 21(9):3511–3519

    Article  PubMed  Google Scholar 

  • Vacke J (1961) Wheat dwarf virus disease. Biologia Plantarum 3(3):228–233

    Article  Google Scholar 

  • Vacke J, Cibulka R (2000) Comparison of DAS-ELISA and enzyme amplified ELISA for detection of wheat dwarf virus in host plants and leafhopper vectors. Plant Protection Sci 36(2):41–45

    Article  Google Scholar 

  • Vacke J, Zacha V, Jokeš M (1986) Identification of virus in wheat new to Czechoslovakia. In: Proceeding Czechoslovak plant protection conference, pp. 209–210

    Google Scholar 

  • Varanda CM, Félix MD, Campos MD, Patanita M, Materatski P (2021) Plant Viruses: From Targets to Tools for CRISPR. Viruses 13(1):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veškrna O, Chrpová J, Šíp V, Sedláček T, Horčička P (2009) Reaction of wheat varieties to infection with barley yellow dwarf virus and prospects for resistance breeding. Czech J Genet Plant Breed 45:45–56

    Article  Google Scholar 

  • Walls J, Rajotte E, Rosa C (2019) The past, present, and future of barley yellow dwarf management. Agriculture 9(1):23

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Chen L, Zhao D, Wang X, Zhang Z (2013) Wheat resistome in response to barley yellow dwarf virus infection. Funct Integr Genomics 13(2):155–165

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Melcher U, Guo X, Wang X, Fan L, Zhou G (2008) Assessment of codivergence of Mastreviruses with their plant hosts. BMC Evol Biol 8(1):1–3

    Article  CAS  Google Scholar 

  • Xie J, Wang X, Liu Y, Peng Y, Zhou G (2007) First report of the occurrence of Wheat dwarf virus in wheat in China. Plant Dis 91(1):111

    Article  CAS  PubMed  Google Scholar 

  • Xin ZY, Zhang ZY, Lin ZS, Chen X, Xu HJ, Ma YZ, Wu DL, Xu QF, Du LP, Banks PM, Larkin PJ (2002) Advances in breeding wheat for BYDV resistance using biotechnology. In: Barley yellow dwarf disease: recent advances and future strategies, vol 1. CIMMYT, Mexico, D.F, p 67

    Google Scholar 

  • Xing Y, Su N, Li D, Yu J, Liu Y (2000) Over-expression of 72 ku protein of wheat yellow mosaic virus in E. coli and preparation of its antiserum. Chin Sci Bull 45(6):525–528

    Article  CAS  Google Scholar 

  • Xu SJ, Banks PM, Dong YS, Zhou RH, Larkin P (1994) Evaluation of Chinese Triticeae for resistance to barley yellow dwarf virus (BYDV). Genetic Resour Crop Evol 41(1):35–41

    Article  Google Scholar 

  • Yan F, Zheng Y, Zhang W, Xiao H, Li S, Cheng Z (2006) Obtained transgenic wheat expressing pac 1 mediated by Agrobacterium is resistant against Barley yellow dwarf virus-GPV. Chin Sci Bull 51(19):2362–2368

    Article  CAS  Google Scholar 

  • Yang J, Zhang TY, Liao QS, He L, Li J, Zhang HM, Chen X, Li J, Yang J, Li JB, Chen JP (2018) Chinese wheat mosaic virus-induced gene silencing in monocots and dicots at low temperature. Front Plant Sci 9:1627

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue H, Wu Y, Li Y, Wei T, Hou W, Wu K (2008) Simultaneous detection of three wheat virus BSMV, BYDV, BYDV-PAV, WYMV and WBD phytoplasma by multiplex PCR. Sci Agric Sin 41:2663–2669

    CAS  Google Scholar 

  • Zaitlin M, Palukaitis P (2000) Advances in understanding plant viruses and virus diseases. Annu Rev Phytopathol 38(1):117–143

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Xin ZY, Larkin PJ (2001) Molecular characterization of a Thinopyrum intermedium group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome 44:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Wang LL, Xin ZY, Lin ZS (2002) Development of new PCR markers specific to a Thinopyrum intermedium chromosome 2Ai-2 and cloning of the St-specific sequences. Acta Genet Sin 29(7):627–633

    CAS  PubMed  Google Scholar 

  • Zhang QP, Li Q, Wang X, Wang HY, Lang SP, Wang YN, Wang SL, Chen PD, Liu DJ (2005) Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VSÆ4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320

    Article  CAS  Google Scholar 

  • Zhang G, Martin TJ, Fritz AK, Miller R, Chen MS, Bowden RL, Johnson JJ (2015) Registration of ‘Oakley CL’wheat. J Plant Registr 9(2):190–195

    Article  Google Scholar 

  • Zhang G, Seifers DL, Martin TJ (2014) Inheritance of wheat streak mosaic virus resistance in KS03HW12. Austin J Plant Biol 1:1–4

    CAS  Google Scholar 

  • Zhang T, Liu P, Zhong K, Zhang F, Xu M, He L, Jin P, Chen J, Yang J (2019) Wheat yellow mosaic virus NIb interacting with host light induced protein (LIP) facilitates its infection through perturbing the abscisic acid pathway in wheat. Biology 8(4):80

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Lin Z, Xin Z (2009) Research progress in BYDV resistance genes derived from wheat and its wild relatives. J Genet Genomics 36(9):567–573

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Xin Z, Ma Y, Chen X, Xu Q, Lin Z (1999) Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci China C Life Sci 42(6):663–668

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Liu XJ, Li DW, Yu JL, Han CG (2011) Rapid detection of wheat yellow mosaic virus by reverse transcription loop-mediated isothermal amplification. Virol J 8(1):1–8

    Article  Google Scholar 

  • Zhu X, Wang H, Guo J, Wu Z, Cao A, Bie T, Nie M, You FM, Cheng Z, Xiao J, Liu Y (2012) Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet 124(1):177–188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, P. (2022). Viral Diseases of Wheat: Research Progress and Future Perspectives. In: Kashyap, P.L., et al. New Horizons in Wheat and Barley Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-4134-3_8

Download citation

Publish with us

Policies and ethics