Skip to main content

Dry Bean Biofortification with Iron and Zinc

  • Chapter
  • First Online:
Biofortification of Staple Crops

Abstract

Dry beans, a nutrient-dense dietary staple in Africa, Latin America, and the Caribbean, deliver nutrients such as protein, minerals, and folate, which are often in short supply in other staples. Beans are relatively rich in iron and zinc, two micronutrients for which dietary deficiencies impact billions of people globally. Wide genetic variability in beans seeds, from ~34 to 96 mg/kg for iron and 21 to 59 mg/kg for zinc, led to the recognition that biofortification of beans for maximum levels of these micronutrients is possible through plant breeding. Biofortification efforts to develop bean varieties with seed iron concentrations approaching 90 mg/kg have been underway since the early 2000s. Iron and zinc levels in seeds are positively correlated with each other, and although iron has been the major focus of biofortification efforts, zinc is often evaluated alongside iron. Germplasm diversity screenings have revealed multiple high iron sources in cultivated Andean and Middle American beans as well as wild P. vulgaris and genotypes from closely related species P. dumosus, P. acutifolius, and P. parvifolius. Both seed iron and zinc are moderately heritable traits, and breeding with high iron donor parents based on phenotypic selection has been successfully utilized to achieve genetic gains. To date, at least 60 high iron bean varieties have been released over 12 countries in Eastern and Southern Africa and Latin America. Bean breeders have combined the high iron trait with other traits important to farmers, including seed yield, disease resistance, and abiotic stress tolerance. The application of genomic approaches in breeding high iron beans has been limited. While numerous seed iron and zinc Quantitative Trait Loci (QTL) studies have been undertaken and a meta-analysis identified 12 meta-QTL, 8 of which are for both increased iron and zinc, there has not been much traction in incorporation of these QTL in breeding strategies. Since iron and zinc are quantitative traits controlled by many small-effect QTL, breeders have not found marker-assisted breeding with single or multiple QTL worthwhile. A genomic prediction approach, which in contrast, utilizes thousands of random markers throughout the genome, may be a promising strategy to apply to breeding high iron and zinc beans, and is currently being explored. The prospect of using a transgenic approach to develop high iron and zinc beans is limited at this time due to challenges with plant regeneration and public acceptance of genetically modified (GMO) beans, which may change in the future, and there are many potential candidate genes. The future of biofortification of beans with iron must also look beyond a pure focus on increasing concentration as this approach relies on the assumption that higher iron yields deliver more absorbable iron. To date, one human efficacy study has demonstrated a positive, although slight, effect of biofortification on human iron status. Regardless of concentration, iron from beans can have very low bioavailability due to seed coat polyphenols and phytic acid present in the cotyledons. Evidence from in vitro and animal studies suggests that beans without inhibitory polyphenols and with promoter polyphenols would have higher iron bioavailability and thus deliver more iron. Therefore, redefining biofortification to focus on both iron bioavailability and iron concentration simultaneously in breeding programs has the potential to deliver substantially more nutritional benefits to consumers. The introduction of varieties labeled as high iron beans in Africa and Latin America has largely been met with interest and adoption by farmers and consumers due to strong promotion and the development of varieties with superior yield and disease resistance. Going forward in addition to focusing on iron bioavailability, a greater focus should also be placed on zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton M, Batley J, Bentley A et al (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098

    PubMed  Google Scholar 

  • Acevedo M, Pixley K, Zinyengere N et al (2020) A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat Plants 6(10):1231–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajeesh Krishna TP, Maharajan T, Victor Roch G et al (2020) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amongi W, Mukankusi C, Sebuliba S et al (2018) Iron and zinc grain concentrations diversity and agronomic performance of common bean germplasm collected from East Africa. Afr J Food Agric Nutr Dev 18(3):13717–13742

    CAS  Google Scholar 

  • Andersson MS, Saltzman A, Virk PS (2017) Progress update: crop development of biofortified staple food crops under HarvestPlus. Afr J Food Agric Nutr Dev 17(2):11905–11935

    CAS  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM et al (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55(19):7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Asare-Marfo D, Birol E, Gonzalez C (2013) Prioritizing countries for biofortification interventions using country-level data. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Astudillo C, Fernandez A, Blair M et al (2013) The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression. Front Plant Sci 4:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraza A, Cabrera-Ponce JL, Gamboa-Becerra R et al (2015) The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean. Front Plant Sci 6:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Beasley JT, Bonneau JP, Sánchez-Palacios JT et al (2019) Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. Plant Biotechnol J 17(8):1514–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168(2):145–175

    Article  CAS  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  • Beebe S (2020) Biofortification of common bean for higher iron concentration. Front Sust Food Syst 4:206

    Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2002) Research on trace minerals in the common bean. Food Nutr Bull 21(4):387–391

    Article  Google Scholar 

  • Birol E, Meenakshi JV, Oparinde A et al (2015) Developing country consumers’ acceptance of biofortified foods: a synthesis. Food Secur 7(3):555–568

    Article  Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci 109(14):E788–E796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitocchi E, Rau D, Bellucci E et al (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci 8:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125(5):1015–1031

    Article  PubMed  Google Scholar 

  • Blair M, Muñoz L, Debouck D (2002) Tepary beans (P. acutifolius): molecular analysis of a forgotten genetic resource for dry land agriculture. Grain Leg 36:25–26

    Google Scholar 

  • Blair MW, Astudillo C, Grusak MA et al (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23(2):197–207

    Article  CAS  Google Scholar 

  • Blair MW, Monserrate F, Beebe SE et al (2010a) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Reg 4(1):55–59

    Article  Google Scholar 

  • Blair MW, Medina JI, Astudillo C et al (2010b) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121(6):1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Knewtson SJB, Astudillo C et al (2010c) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10(1):215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blair MW, González LF, Kimani PM et al (2010d) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121(2):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J et al (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122(3):511–521

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C et al (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EOPL et al (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20(6):717–726

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (2018) Biofortification: an agricultural tool to address mineral and vitamin deficiencies. In: MGV M, Hurrell RF (eds) Food fortification in a globalized world. Academic Press, San Diego, CA, pp 69–81

    Chapter  Google Scholar 

  • Bouis HE, Saltzman A (2016) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Secur 12:49–58

    Article  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32

    Article  Google Scholar 

  • Brigide P, Ataide TR, Canniatti-Brazaca SG et al (2014) Iron bioavailability of common beans (Phaseolus vulgaris L.) intrinsically labeled with 59Fe. J Trace Elem Med Biol 28(3):260–265

    Article  CAS  PubMed  Google Scholar 

  • Brod FCA, Dinon AZ, Kolling DJ et al (2013) Development of plasmid DNA reference material for the quantification of genetically modified common bean Embrapa 5.1. J Agric Food Chem 61(20):4921–4926

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Sparvoli F, Doria E et al (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118(6):1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Glahn RP, Tava A et al (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Res 141:27–37

    Article  Google Scholar 

  • Caproni L, Raggi L, Talsma EF et al (2020) European landrace diversity for common bean biofortification: a genome-wide association study. Sci Rep 10(1):19775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cegarra L, Colins A, Gerdtzen ZP et al (2019) Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process. PLoS One 14(6):e0218123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, McGee R, Vandemark G et al (2016) Dietary fiber analysis of four pulses using AOAC 2011.25: implications for human health. Nutrients 8(12):829

    Article  PubMed Central  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS et al (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49(5):1742–1750

    Article  CAS  Google Scholar 

  • Cichy KA, Fernandez A, Kilian A et al (2014) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Mol Breed 33(1):139–154

    Article  Google Scholar 

  • Codex (2015) Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU). 37th Session, 23–27 Nov 2015, Bad Soden am Taunus, Germany

    Google Scholar 

  • Codex (2018) Editor Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU). 40th Session, 26–30 Nov 2018, Berlin, Germany

    Google Scholar 

  • Codex (2019) Codex Committee on Food Labelling. 45th Session, 13–17 May 2019, Ottawa, Ontario, Canada

    Google Scholar 

  • Conrad ME, Umbreit JN (2002) Pathways of iron absorption. Blood Cells Mol Dis 29(3):336–355

    Article  CAS  PubMed  Google Scholar 

  • Consaul JR, Lee K (1983) Extrinsic tagging in iron bioavailability research: a critical review. J Agric Food Chem 31(4):684–689

    Article  CAS  PubMed  Google Scholar 

  • Cross AJ, Harnly JM, Ferrucci LM et al (2012) Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr Sci 3(7):905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cvitanich C, Przybyłowicz WJ, Urbanski DF et al (2010) Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biol 10(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cvitanich C, Przybyłowicz WJ, Mesjasz-Przybyłowicz J et al (2011) Micro-PIXE investigation of bean seeds to assist micronutrient biofortification. Nucl Instrum Methods Phys Res B 269(20):2297–2302

    Article  CAS  Google Scholar 

  • Delfini J, Moda-Cirino V, dos Santos NJ et al (2020) Diversity of nutritional content in seeds of Brazilian common bean germplasm. PLoS One 15(9):e0239263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Salinas A, Turley T, Richman A et al (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24(3):438–460

    Article  Google Scholar 

  • DellaValle DM, Glahn RP, Shaff JE et al (2015) Iron absorption from an intrinsically labeled lentil meal is low but upregulated in women with poor iron status. J Nutr 145(10):2253–2257

    Article  CAS  PubMed  Google Scholar 

  • Des Gachons CP, Breslin PA (2016) Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep 16(10):102

    Article  PubMed Central  CAS  Google Scholar 

  • Devaney BL, Barr SI (2002) DRI, EAR, RDA, AI, UL: making sense of this alphabet soup. Nutr Today 37(6):226–232

    Article  Google Scholar 

  • Dias DM, Kolba N, Binyamin D et al (2018) Iron biofortified carioca bean (Phaseolus vulgaris L.)—Based Brazilian diet delivers more absorbable iron and affects the gut microbiota in vivo (Gallus gallus). Nutrients 10(12):1970

    Article  PubMed Central  CAS  Google Scholar 

  • Diaz S, Ariza-Suarez D, Izquierdo P et al (2020) Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 21(1):1–20

    Article  CAS  Google Scholar 

  • Donangelo CM, Woodhouse LR, King SM et al (2003) Iron and zinc absorption from two bean (Phaseolus vulgaris L.) genotypes in young women. J Agric Food Chem 51(17):5137–5143

    Article  CAS  PubMed  Google Scholar 

  • Engle-Stone R, Yeung A, Welch R et al (2005) Meat and ascorbic acid can promote Fe availability from Fe−phytate but not from Fe−tannic acid complexes. J Agric Food Chem 53(26):10276–10284

    Article  CAS  PubMed  Google Scholar 

  • Fairweather-Tait SJ (2001) Iron. J Nutr 131(4):1383S–1386S

    Article  CAS  PubMed  Google Scholar 

  • Fairweather-Tait SJ, Dainty J (2002) Use of stable isotopes to assess the bioavailability of trace elements: a review. Food Addit Contam 19(10):939–947

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2020) 2017 Production and consumption stats. http://www.fao.org/faostat/en/#data/

  • Finkelstein JL, Haas JD, Mehta S (2017) Iron-biofortified staple food crops for improving iron status: a review of the current evidence. Curr Opin Biotechnol 44:138–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser RZ, Shitut M, Agrawal P et al (2018) Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int J Toxicol 37(3):241–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V et al (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97(5-6):847–856

    Article  CAS  Google Scholar 

  • Ganesan K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18(11):2331

    Article  PubMed Central  CAS  Google Scholar 

  • Gao D, Abernathy B, Rohksar D et al (2014) Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris). Frontiers Plant Sci 5:339

    Google Scholar 

  • Gardner JD, Ciociola AA, Robinson M (2002) Measurement of meal-stimulated gastric acid secretion by in vivo gastric autotitration. J Appl Physiol 92(2):427–434

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2014) Beans: origins and development. In: Encyclopedia of global archaeology, vol 4. Springer, New York, pp 822–827

    Chapter  Google Scholar 

  • Gepts P, Acosta-Gallegos J, Beaver J et al (2020) Phaseolus beans—crop vulnerability statement. USDA—Crop Germplasm Committee

    Google Scholar 

  • Gibson RS, Raboy V, King JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76(11):793–804

    Article  PubMed  Google Scholar 

  • Glahn RP (2019) Redefining iron nutrition from the common bean: evidence for moving from biofortification to biodelivery. In: Bean Improvement Cooperative (BIC) biannual meeting, Fargo, ND, pp 25–26. http://www.bic.uprm.edu/wp-content/uploads/2020/11/BICv63_2020.pdf

  • Glahn RP, Wien EM, van Campen DR et al (1996) Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: use of a novel in vitro method for rapid estimation of iron bioavailability. J Nutr 126(1):332–339

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Lee OA, Yeung A et al (1998a) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128(9):1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Lai C, Hsu J et al (1998b) Decreased citrate improves iron availability from infant formula: application of an in vitro digestion/Caco-2 cell culture model. J Nutr 128(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Wortley GM, South PK et al (2002) Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50(2):390–395

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Cheng Z, Giri S (2015) Extrinsic labeling of staple food crops with isotopic iron does not consistently result in full equilibration: revisiting the methodology. J Agric Food Chem 63(43):9621–9628

    Article  CAS  PubMed  Google Scholar 

  • Glahn RP, Tako E, Cichy K et al (2016) The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vulgaris). Food Funct 7(7):3193–3200

    Article  CAS  PubMed  Google Scholar 

  • Glahn R, Tako E, Hart J et al (2017) Iron bioavailability studies of the first generation of iron-biofortified beans released in Rwanda. Nutrients 9(7):787

    Article  PubMed Central  CAS  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A et al (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucl Acids Res 33(Suppl_1):D660–D665

    CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2011) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40(D1):D1178–D1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorkiewicz G, Moschen A (2018) Gut microbiome: a new player in gastrointestinal disease. Virchows Arch 472(1):159–172

    Article  CAS  PubMed  Google Scholar 

  • Guild GE, Paltridge NG, Andersson MS et al (2017a) An energy-dispersive X-ray fluorescence method for analysing Fe and Zn in common bean, maize and cowpea biofortification programs. Plant Soil 419(1–2):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guild G, Parkes E, Nutti M et al (2017b) High-throughput measurement methodologies for developing nutrient-dense crops. Afr J Food Agric Nutr Dev 17(2):11941–11954

    CAS  Google Scholar 

  • Guilloteau P, Zabielski R, Hammon HM et al (2010) Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 23(1):4–22

    Article  PubMed  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG et al (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17(1):239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastroint Liver Physiol 307(4):G397–G409

    Article  CAS  Google Scholar 

  • Guzmán-Maldonado SH, Martínez O, Acosta-Gallegos JA (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43(3):1029–1035

    Article  Google Scholar 

  • Haas JD, Luna SV, Lung’aho MG et al (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146(8):1586–1592

    Article  CAS  PubMed  Google Scholar 

  • Hadley KB, Johnson LK, Hunt JR (2006) Iron absorption by healthy women is not associated with either serum or urinary prohepcidin. Am J Clin Nutr 84(1):150–155

    Article  CAS  PubMed  Google Scholar 

  • Hallberg L, Brune M, Rossander L (1989) Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr 49(1):140–144

    Article  CAS  PubMed  Google Scholar 

  • Hansen SL, Trakooljul N, Spears JW et al (2009) Age and dietary iron affect expression of genes involved in iron acquisition and homeostasis in young pigs. J Nutr 140(2):271–277

    Article  PubMed  CAS  Google Scholar 

  • Hart JJ, Tako E, Glahn RP (2017) Characterization of polyphenol effects on inhibition and promotion of iron uptake by Caco-2 cells. J Agric Food Chem 65(16):3285–3294

    Article  CAS  PubMed  Google Scholar 

  • Hart JJ, Tako E, Wiesinger J et al (2020) Polyphenolic profiles of yellow bean seed coats and their relationship with iron bioavailability. J Agric Food Chem 68(3):769–778

    Article  CAS  PubMed  Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16(2):3895–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppler M, Zeder C, Walczyk T (2009) Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry. Anal Chem 81(17):7368–7372

    Article  CAS  PubMed  Google Scholar 

  • Hoppler M, Egli I, Petry N et al (2014) Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding. J Food Sci 79(9):C1629–C1634

    Article  CAS  PubMed  Google Scholar 

  • Hummel M, Hallahan BF, Brychkova G et al (2018) Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  • Hummel M, Talsma EF, Taleon V et al (2020) Iron, zinc and phytic acid retention of biofortified, low phytic acid, and conventional bean varieties when preparing common household recipes. Nutrients 12(3):658

    Article  CAS  PubMed Central  Google Scholar 

  • Isaacs KB, Snapp SS, Kelly JD et al (2016) Farmer knowledge identifies a competitive bean ideotype for maize–bean intercrop systems in Rwanda. Agric Food Secur 5(1):15

    Article  Google Scholar 

  • Ishida JK, Caldas DGG, Oliveira LR et al (2018) Genome-wide characterization of the NRAMP gene family in Phaseolus vulgaris provides insights into functional implications during common bean development. Genetics Mol Biol 41:820–833

    Article  CAS  Google Scholar 

  • Islam F, Basford K, Jara C et al (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Res Crop Evol 49(3):285–293

    Article  Google Scholar 

  • Izquierdo P, Astudillo C, Blair MW et al (2018) Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor Appl Genet 131(8):1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo P, Katuuramu DN, Cichy KA (2019) Genomic selection for nutritional traits and cooking time in common bean (Phaseolus vulgaris L.) using genotyping by sequencing. In: Plant and animal genome XXVII, San Diego, CA, 2019

    Google Scholar 

  • Jahangirian H, Rafiee-Moghaddam R, Jahangirian N et al (2020) Green synthesis of zeolite/Fe(2)O(3) nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizer. Int J Nanomedicine 15:1005–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha AB, Ashokkumar K, Diapari M et al (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Comp Anal 42:134–140

    Article  CAS  Google Scholar 

  • Jin F, Cheng Z, Rutzke MA et al (2008) Extrinsic labeling method may not accurately measure Fe absorption from cooked pinto beans (Phaseolus vulgaris): comparison of extrinsic and intrinsic labeling of beans. J Agric Food Chem 56(16):6881–6885

    Article  CAS  PubMed  Google Scholar 

  • Katuuramu DN, Hart JP, Porch TG et al (2018) Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol Breed 38(4):44

    Article  CAS  Google Scholar 

  • Khan N, Mukhtar H (2019) Tea polyphenols in promotion of human health. Nutrients 11(1):39

    Article  CAS  Google Scholar 

  • Kimani P (2005) Fast tracking of nutritionally-rich bean varieties. Highlights no. 24, CIAT in Africa

    Google Scholar 

  • Kimani PM, Warsame A (2019) Breeding second-generation biofortified bean varieties for Africa. Food Energy Secur 8(4):e00173

    Article  Google Scholar 

  • Klaedtke SM, Cajiao C, Grajales M et al (2012) Photosynthate remobilization capacity from drought-adapted common bean (Phaseolus vulgaris L.) lines can improve yield potential of interspecific populations within the secondary gene pool. J Plant Breed Crop Sci 4(4):49–61

    Google Scholar 

  • Kortman GAM, Raffatellu M, Swinkels DW et al (2014) Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 38(6):1202–1234

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Palve A, Joshi C et al (2019) Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 5(6):e01914

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima Aragão FJ (2014) GM plants with RNAi—golden mosaic resistant bean. BMC Proc 8(4):O24

    Article  PubMed Central  Google Scholar 

  • Lin L-Z, Harnly JM, Pastor-Corrales MS et al (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107(1):399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobaton JD, Miller T, Gil J et al (2018) Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11(2):170068

    Article  CAS  Google Scholar 

  • Lockyer S, White A, Walton J et al (2018) Proceedings of the ‘Working together to consider the role of biofortification in the global food chain’ workshop. Nutr Bull 43(4):416–427

    Article  Google Scholar 

  • Ludwig Y, Slamet-Loedin IH (2019) Genetic biofortification to enrich rice and wheat grain iron: from genes to product. Front Plant Sci 10:833

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Sharifan H, Dou F et al (2020) Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem Eng J 384:123802

    Article  CAS  Google Scholar 

  • Mahajan R, Zargar SM, Aezum AM et al (2015) Evaluation of iron, zinc, and protein contents of common bean (Phaseolus vulgaris L.) genotypes: a collection from Jammu & Kashmir, India. Leg Genomics Genet 2015:6

    Google Scholar 

  • Marinangeli CPF, Curran J, Barr SI et al (2017) Enhancing nutrition with pulses: defining a recommended serving size for adults. Nutr Rev 75(12):990–1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Martini LA, Tchack L, Wood RJ (2002) Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 cells. J Nutr 132(4):693–696

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Kobayashi T, Ishimaru Y et al (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxfield L, Crane JS (2019) Zinc deficiency. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  • Mbikayi N, Mumba A, Kiman P et al (2018) Identification of biofortified beans (Phaseolus vulgaris L): case study on genetic diversity, relationship and rates of iron and zinc concentrations in farmer’s accession, in eastern DR Congo. Int J Innov Appl Stud 25(1):131–139

    Google Scholar 

  • McClean PE, Moghaddam SM, Lopéz-Millán AF et al (2017) Phenotypic diversity for seed mineral concentration in North American dry bean germplasm of Middle American ancestry. Crop Sci 57(6):3129–3144

    Article  CAS  Google Scholar 

  • Mejia LA, Dary O, Boukerdenna H (2017) Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals. Ann N Y Acad Sci 1390(1):47–58

    Article  PubMed  Google Scholar 

  • Miller DD, Schricker BR, Rasmussen RR et al (1981) An in vitro method for estimation of iron availability from meals. Am J Clin Nutr 34(10):2248–2256

    Article  CAS  PubMed  Google Scholar 

  • Morris ER, Ellis R (1976) Isolation of monoferric phytate from wheat bran and its biological value as an iron source to the rat. J Nutr 106(6):753–760

    Article  CAS  PubMed  Google Scholar 

  • Mukamuhirwa F, Tusiime G, Mukankusi MC (2015) Inheritance of high iron and zinc concentration in selected bean varieties. Euphytica 205(2):349–360

    Article  CAS  Google Scholar 

  • Mulambu J, Andersson M, Palenberg M (2017) Iron beans in Rwanda: crop development and delivery experience. Afr J Food Agric Nutr Dev 17(2):12026–12050

    CAS  Google Scholar 

  • NAL (2020) The National Agricultural Library’s Agricultural Thesaurus and Glossary. https://agclass.nal.usda.gov/mtwdk.exe?s=1&n=1&y=0&l=60&k=glossary&t=2&w=biofortification2020

  • Noah L, Guillon F, Bouchet B et al (1998) Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J Nutr 128(6):977–985

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke JA, Iniguez LP, Fu F et al (2014) An RNA-Seq based gene expression atlas of the common bean. BMC Genomics 15(1):866

    Article  PubMed  PubMed Central  Google Scholar 

  • Pachón H, Stoltzfus RJ, Glahn RP (2008a) Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion/Caco-2 cell model. Nutr Res 28(12):851–858

    Article  PubMed  CAS  Google Scholar 

  • Pachón H, Stoltzfus RJ, Glahn RP (2008b) Homogenization, lyophilization or acid-extraction of meat products improves iron uptake from cereal–meat product combinations in an in vitro digestion/Caco-2 cell model. Br J Nutr 101(6):816–821

    Article  PubMed  CAS  Google Scholar 

  • Palčić I, Karažija T, Petek M et al (2018) Relationship between origin and nutrient content of Croatian common bean landraces. J Cent Eur Agric 19(3):490–502

    Article  Google Scholar 

  • Paramo LA, Feregrino-Pérez AA, Guevara R et al (2020) Nanoparticles in agroindustry: applications, toxicity, challenges, and trends. Nanomaterials 10(9):1654

    Article  CAS  PubMed Central  Google Scholar 

  • Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med 233(6):651–664

    Article  CAS  Google Scholar 

  • Patterson JK, Rutzke MA, Fubini SL et al (2009) Dietary inulin supplementation does not promote colonic iron absorption in a porcine model. J Agric Food Chem 57(12):5250–5256

    Article  CAS  PubMed  Google Scholar 

  • Pérez S, Oparinde A, Birol E et al (2018) Consumer acceptance of an iron bean variety in Northwest Guatemala: the role of information and repeated messaging. Agric Food Econ 6:1–23

    Article  Google Scholar 

  • Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140(11):1977–1982

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142(3):492–497

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Campion B et al (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143(8):1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2014) Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 144(11):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP et al (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry N, Rohner F, Gahutu JB et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146(5):970–975

    Article  CAS  PubMed  Google Scholar 

  • Philipo M, Ndakidemi PA, Mbega ER (2020a) Multilocation dataset on seed Fe and Zn contents of bean (Phaseolus vulgaris L.) genotypes grown in Tanzania. Data Brief 2020:105664

    Article  Google Scholar 

  • Philipo M, Ndakidemi PA, Mbega ER (2020b) Environmental and genotypes influence on seed iron and zinc levels of landraces and improved varieties of common bean (Phaseolus vulgaris L.) in Tanzania. Ecol Genet Genom 2020:100056

    Google Scholar 

  • Pinheiro C, Baeta JP, Pereira AM et al (2010) Diversity of seed mineral composition of Phaseolus vulgaris L. germplasm. J Food Comp Anal 23(4):319–325

    Article  CAS  Google Scholar 

  • Pretorius B, Schönfeldt HC, Hall N (2016) Total and haem iron content lean meat cuts and the contribution to the diet. Food Chem 193:97–101

    Article  CAS  PubMed  Google Scholar 

  • Pujolà M, Farreras A, Casañas F (2007) Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.). Food Chem 102(4):1034–1041

    Article  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132(3):503S–505S

    Article  PubMed  Google Scholar 

  • Raboy V (2020) Low phytic acid crops: observations based on four decades of research. Plan Theory 9(2):140

    CAS  Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Taylor S (2016) Crop niche modeling projects major shifts in common bean growing areas. Agric For Meteorol 218:102–113

    Article  Google Scholar 

  • Ribeiro ND, Mambrin RB, Storck L (2013) Combined selection for grain yield, cooking quality and minerals in the common bean. Rev Ciênc Agron 44(4):869–877

    Article  Google Scholar 

  • Russell R, Beard JL, Cousins RJ et al (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. A report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board Institute of Medicine

    Google Scholar 

  • Salama DM, Osman SA, Abd El-Aziz ME et al (2019) Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol 18:101083

    Article  Google Scholar 

  • Saltzman A, Birol E, Oparinde A et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390(1):104–114

    Article  PubMed  Google Scholar 

  • Sandberg AS (2007) Bioavailability of minerals in legumes. Br J Nutr 88(S3):281–285

    Article  CAS  Google Scholar 

  • Sanderson L-A, Caron CT, Tan R et al (2019) KnowPulse: a web-resource focused on diversity data for pulse crop improvement. Front Plant Sci 10:965

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathe SK, Deshpande SS, Salunkhe DK et al (1984) Dry beans of phaseolus. A review. Part 1. Chemical composition: proteins. CRC Crit Rev Food Sci Nutr 20(1):1–46

    Article  CAS  Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM et al (2009) Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(S2):S330–S375

    Article  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Aggarwal P, Kaur A (2017) Biofortification: a new approach to eradicate hidden hunger. Food Rev Int 33(1):1–21

    Article  CAS  Google Scholar 

  • Siegrist M, Hartmann C (2020) Consumer acceptance of novel food technologies. Nat Food 1(6):343–350

    Article  Google Scholar 

  • Singh SP (1994) Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Sci 34(2):352–355

    Article  Google Scholar 

  • Smith MR, Veneklaas E, Polania J (2019) Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.). PLoS One 14(6):e0217099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G-Q, Han X, Wiersma AT et al (2020) Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.). PLoS One 15(3):e0229909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling L, Loevinsohn ME, Ntabomvura B (2008) Rethinking the farmer’s role in plant breeding: local bean experts and on-station selection in Rwanda. Exp Agric 29(4):509–519

    Article  Google Scholar 

  • Stokstad E (2019) After 20 years, Golden Rice nears approval. Science 366(6468):934

    Article  CAS  PubMed  Google Scholar 

  • Strobbe S, Van Der Straeten D (2017) Folate biofortification in food crops. Curr Opin Biotechnol 44:202–211

    Article  CAS  PubMed  Google Scholar 

  • Tako E, Glahn RP (2010) White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Int J Vit Nutr Res 80(6):416–429

    Article  CAS  Google Scholar 

  • Tako E, Glahn RP, Welch RM et al (2008) Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br J Nutr 99(3):472–480

    Article  CAS  PubMed  Google Scholar 

  • Tako E, Glahn RP, Laparra JM et al (2009) Iron and zinc bioavailabilities to pigs from red and white beans (Phaseolus vulgaris L.) are similar. J Agric Food Chem 57(8):3134–3140

    Article  CAS  PubMed  Google Scholar 

  • Tako E, Rutzke MA, Glahn RP (2010) Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability1. Poult Sci 89(3):514–521

    Article  CAS  PubMed  Google Scholar 

  • Tako E, Blair MW, Glahn RP (2011) Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Nutr J 10(1):113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tako E, Beebe SE, Reed S et al (2014) Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Nutr J 13(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tako E, Bar H, Glahn RP (2016) The combined application of the Caco-2 cell bioassay coupled with in vivo (Gallus gallus) feeding trial represents an effective approach to predicting Fe bioavailability in humans. Nutrients 8(11):732

    Article  PubMed Central  CAS  Google Scholar 

  • Talsma EF, Melse-Boonstra A, Brouwer ID (2017) Acceptance and adoption of biofortified crops in low- and middle-income countries: a systematic review. Nutr Rev 75(10):798–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan SY, Yeung CK, Tako E et al (2008) Iron bioavailability to piglets from red and white common beans (Phaseolus vulgaris). J Agric Food Chem 56(13):5008–5014

    Article  CAS  PubMed  Google Scholar 

  • Tollefson J (2011) Brazil cooks up transgenic bean. Nature 478(7368):168

    Article  CAS  PubMed  Google Scholar 

  • Trumbo P, Yates AA, Schlicker S (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Acad Nutr Dietetics 101(3):294

    CAS  Google Scholar 

  • Tryphone GM, Nchimbi-Msolla S (2010) Diversity of common bean (Phaseolus vulgaris L.) genotypes in iron and zinc contents under screenhouse conditions. Afr J Agric Res 5(8):738–747

    Google Scholar 

  • Tyssandier V, Reboul E, Dumas J-F et al (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastroint Liver Physiol 284(6):G913–G923

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Close TJ, Singh NK et al (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12(2):202–210

    Article  PubMed  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vucenik I (2019) Anticancer properties of inositol hexaphosphate and inositol: an overview. J Nutr Sci Vit 65(Supplement):S18–S22

    Article  Google Scholar 

  • Waldman KB, Kerr JM, Isaacs KB (2014) Combining participatory crop trials and experimental auctions to estimate farmer preferences for improved common bean in Rwanda. Food Policy 46:183–192

    Article  Google Scholar 

  • Welch RM, House WA, Beebe S et al (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus v ulgaris L.) seeds. J Agric Food Chem 48(8):3576–3580

    Article  CAS  PubMed  Google Scholar 

  • Weltzien E, Rattunde F, Christinck A et al (2019) Gender and farmer preferences for varietal traits: Evidence and issues for crop improvement. Plant Breed Rev 43:243–278

    Article  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7(11):e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheby MS (1970) Site of iron absorption in man. Scand J Haematol 7(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger JA, Cichy KA, Glahn RP et al (2016) Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.). J Agric Food Chem 64(45):8592–8603

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger JA, Cichy KA, Tako E et al (2018) The fast cooking and enhanced iron bioavailability properties of the Manteca yellow bean (Phaseolus vulgaris L.). Nutrients 10(11):1609

    Article  PubMed Central  CAS  Google Scholar 

  • Wiesinger JA, Glahn RP, Cichy KA et al (2019) An in vivo (Gallus gallus) feeding trial demonstrating the enhanced iron bioavailability properties of the fast cooking manteca yellow bean (Phaseolus vulgaris L.). Nutrients 11(8):1768

    Article  CAS  PubMed Central  Google Scholar 

  • Wiesinger JA, Cichy KA, Hooper SD et al (2020) Processing white or yellow dry beans (Phaseolus vulgaris L.) into a heat treated flour enhances the iron bioavailability of bean-based pastas. J Funct Foods 71:104018

    Article  CAS  Google Scholar 

  • Wiesinger JA, Osorno JM, McClean PE et al (2021) Faster cooking times and improved iron bioavailability are associated with the down regulation of procyanidin synthesis in slow-darkening pinto beans (Phaseolus vulgaris L.). J Funct Foods 82:104444

    Article  CAS  Google Scholar 

  • Worku W (2008) Evaluation of common bean (Phaseolus vulgaris L.) genotypes of diverse growth habit under sole and intercropping with maize (Zea mays L.) in southern Ethiopia. J Agron 2008:1

    Google Scholar 

  • Wortley G, Leusner S, Good C et al (2007) Iron availability of a fortified processed wheat cereal: a comparison of fourteen iron forms using an in vitro digestion/human colonic adenocarcinoma (CaCo-2) cell model. Br J Nutr 93(1):65–71

    Article  CAS  Google Scholar 

  • Yang A, Wu J, Deng C et al (2018) Genotoxicity of zinc oxide nanoparticles in plants demonstrated using transgenic Arabidopsis thaliana. Bull Environ Contam Toxicol 101(4):514–520

    Article  CAS  PubMed  Google Scholar 

  • Yeung AC, Glahn RP, Miller DD (2001) Dephosphorylation of sodium caseinate, enzymatically hydrolyzed casein and casein phosphopeptides by intestinal alkaline phosphatase: implications for iron availability. J Nutr Biochem 12(5):292–299

    Article  CAS  PubMed  Google Scholar 

  • Yeung CK, Glahn RP, Miller DD (2005) Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells. J Agric Food Chem 53(1):132–136

    Article  CAS  PubMed  Google Scholar 

  • Yun S, Habicht J-P, Miller DD et al (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134(10):2717–2721

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zheng J, Li Y et al (2016) Natural polyphenols for prevention and treatment of cancer. Nutrients 8(8):515

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu L, Glahn RP, Nelson D et al (2009) Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model. J Agric Food Chem 57(11):5014–5019

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Cichy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cichy, K., Chiu, C., Isaacs, K., Glahn, R. (2022). Dry Bean Biofortification with Iron and Zinc. In: Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A. (eds) Biofortification of Staple Crops. Springer, Singapore. https://doi.org/10.1007/978-981-16-3280-8_10

Download citation

Publish with us

Policies and ethics