Skip to main content

Inactivation of Fungi and Fungal Toxins by Cold Plasma

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety
  • 924 Accesses

Abstract

Over the last decades, foods contaminated by spoilage fungi and their mycotoxins have become a serious global burden, which not only cause huge loss of food production and quality but also severely threaten human health. Currently, a novel nonthermal technology of cold plasma exhibits great potentials as a cost-effective, efficient, chemical-free and environmental-friendly strategy to inactivate fungi and degrade mycotoxins on foods. Herein, this chapter mainly presents an overview of the decontamination of fungi and their mycotoxins by cold plasma and the possible mechanisms. The published literatures show that cold plasma can effectively inactive various fungi (yeasts and molds) and their biofilms. The reactive species in cold plasma can directly damage the external structure of cell, but also induce oxidative stress in cells, consequently damaging the intercellular components and destroying cell normal physiochemical functions. Besides reducing the mycotoxin production via inactivating fungi, cold plasma can also degrade mycotoxins to less or nontoxic molecules through complex chemical reactions. Furthermore, the last sector summarizes the studies of plasma-activated water (PAW) on fungi inactivation and mycotoxin degradation. Above all, although the effectiveness of cold plasma/PAW for fungi and mycotoxins inactivation has been evidenced, the exact mechanism (especially the degradation pathway of mycotoxin) is still not clear. Meanwhile, studies about the edible safety of plasma/PAW-treated food and the large-scale industrial plasma device development are rare, which need much more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baier RE, Carter JM, Sorenson SE, Meyer AE, McGowan BD, Kasprzak SA (1992) Radiofrequency gas plasma (glow discharge) disinfection of dental operative instruments, including handpieces. J Oral Implantol 18:236–242

    CAS  PubMed  Google Scholar 

  • Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25(4):626–632

    Article  CAS  PubMed  Google Scholar 

  • Bosch L, Pfohl K, Avramidis G, Wieneke S, Viol W, Karlovsky P (2007) Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 9(97):1–12

    Google Scholar 

  • Burlica R, Grim R, Shih K, Balkwill D, Locke B (2010) Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Process Polym 7(8):640–649

    Article  CAS  Google Scholar 

  • Chau TT, Kao KC, Blank G, Madrid F (1996) Microwave plasma for low temperature dry sterilization. Biomaterials 17:1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Bai F, Xiu Z (2010) Oxidative stress induced in Saccharomyces Cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE Trans Plasma Sci 38(8):1885–1891

    Article  CAS  Google Scholar 

  • Chen D, Chen P, Cheng Y, Peng P, Liu J, Ma Y, Liu Y, Ruan R (2019) Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food Bioprocess Technol 12(4):246–254

    Article  CAS  Google Scholar 

  • Choi EJ, Park HW, Kim SB, Ryu S, Lim J, Hong EJ, Byeon YS, Chun HH (2019) Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.). Food Control 98:501–509

    Article  CAS  Google Scholar 

  • Coburn J, Kay E (1979) Some chemical aspects of the fluorocarbon plasma etching of silicon and its compounds. IBM J Res Dev 23(1):33–41

    Article  CAS  Google Scholar 

  • Cui HY, Bai M, Rashed M, Lin L (2018) The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 266:69–78

    Article  CAS  PubMed  Google Scholar 

  • Dasan BG, Boyaci IH, Mutlu M (2016a) Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 70:1–8

    Article  CAS  Google Scholar 

  • Dasan BG, Mutlu M, Boyaci IH (2016b) Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol 216:50–59

    Article  CAS  PubMed  Google Scholar 

  • Dasan BG, Boyaci IH, Mutlu M (2017) Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residual viability of spores. J Food Eng 196:139–149

    Article  CAS  Google Scholar 

  • Deacon JW (2013) Fungal biology. John Wiley & Sons, New York, NY

    Google Scholar 

  • Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US (2017) Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–191

    Article  CAS  Google Scholar 

  • Diao E, Hou H, Dong H (2013) Ozonolysis mechanism and influencing factors of aflatoxin B1: a review. Trends Food Sci Technol 33(1):21–26

    Article  CAS  Google Scholar 

  • Du M, Xu H, Zhu Y, Ma R, Jiao Z (2020) A comparative study of the major antimicrobial agents against the yeast cells on the tissue model by helium and air surface micro-discharge plasma. AIP Adv 10:025036

    Article  CAS  Google Scholar 

  • Efremov AM, Kim DP, Kim CI (2004) Simple Model for Ion-Assisted Etching Using Coupled Plasma: Effect of Gas Mixing Ratio. IEEE Trans Plasma Sci 32:1344–1351

    Article  CAS  Google Scholar 

  • Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19:1063–1077

    Article  CAS  Google Scholar 

  • Feng H, Wang R, Sun P, Wu H, Liu Q, Fang J, Zhu W, Li F, Zhang J (2010) A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants. Appl Phys Lett 97:131501

    Article  Google Scholar 

  • Fukuda S, Kawasaki Y, Izawa S (2019) Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. J Biosci Bioeng 128(1):28–32

    Article  CAS  PubMed  Google Scholar 

  • Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34(4):1257–1269

    Article  CAS  Google Scholar 

  • Ge M, Zhang L, Ai J, Ji R, He L, Liu C (2020) Effect of heat shock and potassium sorbate treatments on gray mold and postharvest quality of 'XuXiang' kiwifruit. Food Chem 324:126891

    Article  CAS  PubMed  Google Scholar 

  • Go SM, Park MR, Kim HS, Choi WS, Jeong RD (2019) Antifungal effect of non-thermal atmospheric plasma and its application for control of postharvest Fusarium oxysporum decay of paprika. Food Control 98:245–252

    Article  CAS  Google Scholar 

  • Gonzales P (2002) A handbook of rice seedborne fungi. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Article  Google Scholar 

  • Griffiths N (1993) Low temperature sterilization using gas plasma. Med Device Technol 4:37–40

    CAS  PubMed  Google Scholar 

  • Guo J, Huang K, Wang X, Lyu C, Yang N, Li Y, Wang J (2017) Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. J Food Prot 80(2):225–230

    Article  CAS  PubMed  Google Scholar 

  • Handorf O, Weihe T, Bekeschus S, Graf AC, Schnabel U, Riedel K, Ehlbeck J (2018) Nonthermal Plasma Jet Treatment Negatively Affects the Viability and Structure of Candida albicans SC5314 Biofilms. Appl Environ Microbiol 84(21):e01163–e01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Duan J, Xu J, Ma M, Chai B, He G, Gan L, Zhang S, Duan X, Lu X, Chen H (2020) Candida albicans biofilm inactivated by cold plasma treatment in vitro and in vivo. Plasma Process Polym 17:e1900068

    Article  Google Scholar 

  • Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I (2017) Mycotoxin decontamination of food: cold atmospheric pressure plasma versus “classic” decontamination. Toxins 9(5):151

    Article  PubMed Central  Google Scholar 

  • Hojnik N, Modic M, Ni Y, Filipič G, Cvelbar U, Walsh JL (2019) Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ Sci Technol 53(4):1893–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfe V, Sheel DW (2007) Atmospheric-pressure PECVD coating and plasma chemical etching for continuous processing. IEEE Trans Plasma Sci 35:204–214

    Article  CAS  Google Scholar 

  • Hosseini SI, Farrokhi N, Shokri K, Khani MR, Shokri B (2018) Cold low pressure O2 plasma treatment of Crocus sativus: An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food Chem 257:310–315

    Article  CAS  PubMed  Google Scholar 

  • Iqdiam BM, Abuagela MO, Boz Z, Marshall SM, Goodrich-Schneider R, Sims CA, Marshall MR, MacIntosh AJ, Welt BA (2019) Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. J Food Process Preserv 00(7):e14305

    Google Scholar 

  • Iseki S, Ohta T, Aomatsu A, Ito M, Kano H, Higashijima Y, Hori M (2010) Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl Phys Lett 96(15):153704

    Article  PubMed  PubMed Central  Google Scholar 

  • Iseki S, Hashizume H, Jia F, Takeda K, Ishikawa K, Ohta T, Ito M, Hori M (2011) Inactivation of Penicillium digitatum spores by a high-density ground-state atomic oxygen-radical source employing an atmospheric-pressure plasma. Appl Phys Express 4(11):116201.1–116201.3

    Article  Google Scholar 

  • Itooka K, Takahashi K, Izawa S (2016) Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(21):9295–9304

    Article  CAS  PubMed  Google Scholar 

  • Itooka K, Takahashi K, Kimata Y, Izawa S (2018) Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102:2279–2288

    Article  CAS  PubMed  Google Scholar 

  • Jalili M (2015) A Review on Aflatoxins Reduction in Food. Iran J Health Saf Environ 3(1):445–459

    Google Scholar 

  • Jin Y, Ren C, Xiu Z, Wang D, Wang Y, Yu H (2006) Comparison of yeast inactivation treated in He, Air and N2 DBD plasma. Plasma Sci Technol 8(6):721–723

    Google Scholar 

  • Jo YK, Cho J, Tsai TC, Staack D, Kang MH, Roh JH, Shin DB, Cromwell W, Gross D (2014) A non-thermal plasma seed treatment method for management of a seedborne fungal pathogen on rice seed. Crop Sci 54(2):796–803

    Article  CAS  Google Scholar 

  • Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naitali M (2009) Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol 48(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Hong YJ, Attri P, Sim GB, Lee GJ, Panngom K, Kwon GC, Choi EH, Uhm HS, Park G (2014) Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions. Free Radic Biol Med 72:191–199

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Pengkit A, Choi K, Jeon SS, Choi HW, Shin DB, Choi EH, Uhm HS, Park G (2015) Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLoS One 10(9):e0139263

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P (2016) Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 32(4):179–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh K (2017) Fungi: Biology and applications. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  • Khadem AA, Sharifi SD, Barati M, Borji M (2012) Evaluation of the effectiveness of yeast, zeolite and active charcoal as aflatoxin absorbents in broiler diets. Global Vet 8(4):426–432

    Google Scholar 

  • Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S (2016) Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces 8:19268–19275

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Lee IH, Kim D, Kim SH, Kwon Y-W, Han G-H, Cho G, Choi EH, Lee GJ (2016) Effects of reactive oxygen species on the biological, structural, and optical properties of Cordyceps pruinosa spores. RSC Adv 6(36):30699–30709

    Article  CAS  Google Scholar 

  • Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78(15):5077–5082

    Article  PubMed  PubMed Central  Google Scholar 

  • Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, Sietmann R, Kindel E, Weltmann KD, Kramer A, Kocher T (2010) Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 12:073039

    Article  Google Scholar 

  • Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Controll Fusion 46:63–75

    Article  Google Scholar 

  • Korachi M, Turan Z, Sentürk K, Sahin F, Aslan N (2009) An investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteria, yeasts, fungi and algae. J Electrost 67:678–685

    Article  CAS  Google Scholar 

  • Kuiper-Goodman T (1995) Mycotoxins: risk assessment and legislation. Toxicol Lett 82:853–859

    Article  PubMed  Google Scholar 

  • Lampel KA, Khaldi S, Cahill SM (2012) Bad bug book: handbook of foodborne pathogenic microorganisms and natural toxins. U.S. Food and Drug Administration, Washington, DC

    Google Scholar 

  • Laroussi M (1996) Sterilisation of contaminated matter with an atmospheric pressure plasma. IEEE Trans Plasma Sci 24:1189–1191

    Article  Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233(1–3):81–86

    Article  CAS  Google Scholar 

  • Lee K, Paek Kh, Ju WT, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44(3):269–275

    PubMed  Google Scholar 

  • Liang Jl, Zheng Sh, Ye Sy (2012) Inactivation of Penicillium aerosols by atmospheric positive corona discharge processing. J Aerosol Sci 54:103–112

    Article  CAS  Google Scholar 

  • Liu K, Wang C, Hu H, Lei J, Han L (2016) Indirect treatment effects of water–air MHCD jet on the inactivation of Penicillium Digitatum suspension. IEEE Trans Plasma Sci 44(11):2729–2737

    Article  CAS  Google Scholar 

  • Los A, Ziuzina D, Akkermans S, Boehm D, Cullen PJ, Impe JV, Bourke P (2018) Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res Int 106:509–521

    Article  CAS  PubMed  Google Scholar 

  • Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P (2020) A comparison of inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavus Spores and Biofilms. Appl Environ Microbiol:86

    Google Scholar 

  • Lu Q, Liu D, Song Y, Zhou R, Niu J (2014) Inactivation of the tomato pathogen Cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym 11(11):1028–1036

    Article  CAS  Google Scholar 

  • Luo X, Wang R, Wang L, Li Y, Bian Y, Chen Z (2014) Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control 37(1):171–176

    Article  CAS  Google Scholar 

  • Ma R, Feng H, Li F, Liang Y, Zhang Q, Zhu W, Zhang J, Becker KH, Fang J (2012) An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl Phys Lett 100:123701

    Article  Google Scholar 

  • Ma RN, Feng HQ, Liang YD, Zhang Q, Tian Y, Su B, Zhang J, Fang J (2013) An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium. J Phys D Appl Phys 46:285401

    Article  Google Scholar 

  • Ma R, Feng H, Guo J, Liang Y, Zhang Q, Tian Y, Zhang J, Fang J (2014) An efficient and specific protection of non-thermal plasma-induced live yeast cell derivative (LYCD) for cells against plasma damage. Plasma Process Polym 11(9):822–832

    Article  CAS  Google Scholar 

  • Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Yu S, Tian Y, Wang K, Sun C, Li X, Zhang J, Chen K, Fang J (2016) Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprocess Technol 9(11):1825–1834

    Article  Google Scholar 

  • Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpfl TG, Li YF, Morfill G, Zimmermann JL (2012) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78(12):4242–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Albores A, Del Rio-Garcia JC, Moreno-Martinez E (2007) Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Anim Feed Sci Technol 135(3-4):249–262

    Article  CAS  Google Scholar 

  • Misra NN, Keener KM, Bourke P, Mosnier JP, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J Biosci Bioeng 118(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Misra NN, Yadav B, Roopesh MS, Jo C (2018) Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Compr Rev Food Sci Food Saf 18:106–120

    Article  PubMed  Google Scholar 

  • Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections—a new approach towards preventive medicine using plasmas. New J Phys 11:115019

    Article  Google Scholar 

  • Morgan NN, Elsabbagh MA, Desoky S, Garamoon AA (2009) Deactivation of yeast by dielectric barrier discharge. Eur Phys J Appl Phys 46:31001

    Article  Google Scholar 

  • Naitali M, Kamgang-Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL (2010) Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol 76(22):7662–7664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nield LS, Kamat D (2007) Prevention, diagnosis, and management of diaper dermatitis. Clin Pediatr (Phila) 46:480–486

    Article  Google Scholar 

  • Ouf SA, Basher AH, Mohamed AA (2015) Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric 95:3204–3210

    Article  CAS  PubMed  Google Scholar 

  • Palm ME (2001) Systematics and the impact of invasive fungi on agriculture in the United States knowledge of the systematics of plant-inhabiting fungi is fundamental for making appropriate plant quarantine decisions and thereby safeguarding US plant resources. Bioscience 51:141–147

    Article  Google Scholar 

  • Pan J, Sun K, Liang YD, Sun P, Yang XH, Wang J, Zhang J, Zhu WD, Fang J, Becker KH (2013) Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J Endod 39:105–110

    Article  PubMed  Google Scholar 

  • Pankaj SK, Bueno-Ferrer C, Misra NN, O'Neill L, Jiménez A, Bourke P et al (2014) Surface, thermal and antimicrobial release properties of plasma-treated Zein films. J Renewable Mater 2:77–84

    Article  Google Scholar 

  • Pankaj SK, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83

    Article  CAS  Google Scholar 

  • Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, Park G, Choi EH (2014) Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS One 9(6):e99300

    Article  PubMed  PubMed Central  Google Scholar 

  • Park BJ, Takatori K, Sugita-Konishi Y, Kim IH, Lee MH, Han DW, Chung KH, Hyun SO, Park JC (2007) Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 201:5733–5737

    Article  CAS  Google Scholar 

  • Park G, Baik KY, Kim JG, Kim YJ, Lee KA, Jung RJ, Cho G (2012) Analysis of the biological effects of a non-thermal plasma on Saccharomyces cerevisiae. J Korean Phys Soc 60(6):916–920

    Article  CAS  Google Scholar 

  • Pignata C, Angelo D, Basso D, Cavallero MC, Beneventi S, Tartaro D, Meineri V, Gilli G (2014) Low-temperature, low-pressure gas plasma application on Aspergillus Brasiliensis, Escherichia Coli and Pistachios. J Appl Microbiol 116:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY (2009) The impact of invasive fungi on agricultural ecosystems in the United States. Biol Invasions 11:97–107

    Article  Google Scholar 

  • Rupf S, Lehmann A, Hannig M, Schafer B, Schubert A, Feldmann U, Schindler A (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 59:206–212

    Article  PubMed  Google Scholar 

  • Ryu YH, Kim YH, Lee JY, Shim GB, Uhm HS, Park G, Choi EH (2013) Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One 8(6):e66231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakudo A, Toyokawa Y, Misawa T, Imanishi Y (2017) Degradation and detoxification of aflatoxin B 1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 73:619–626

    Article  CAS  Google Scholar 

  • Scussel VM, Moecke ES, Da Silva BA, Da Silva JR, Rüntzel CL (2019) Effect of cold plasma on black beans (Phaseolus vulgaris L.), fungi inactivation and micro-structures stability. Emirates J Food Agric 31(11):864–873

    Google Scholar 

  • Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresour Technol 99:5104–5109

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL (2017) Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol 10:1042–1052

    Article  CAS  Google Scholar 

  • Shin YP, Sang DH (2015) Application of cold oxygen plasma for the reduction of Cladosporium cladosporioides and Penicillium citrinum on the surface of dried filefish (Stephanolepis cirrhifer) fillets. Int J Food Sci Technol 50:966–973

    Article  Google Scholar 

  • Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML (2016) Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 8(5):125

    Article  PubMed Central  Google Scholar 

  • Siddiqueab SS, Hardya GESJ, Bayliss KL (2018) Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 67:1011–1021

    Article  Google Scholar 

  • Šimončicová J, Kalinakova B, Kovacik D, Medvecka V, Lakatos B, Krystofova S, Hoppanova L, Paluskova V, Hudecova D, Durina P, Zahoranova A (2018) Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol 102:6647–6658

    Article  PubMed  Google Scholar 

  • Souskova H, Scholtz V, Julák J, Kommová L, Savická D, Pazlarová J (2011) The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol 56(1):77–79

    Article  CAS  Google Scholar 

  • Suhem K, Matan N, Nisoa M, Matan N (2013) Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol 161:107–111

    Article  PubMed  Google Scholar 

  • Sun P, Sun Y, Wu H, Zhu W, Lopez JL, Liu W, Zhang J, Li R, Fang J (2011) Atmospheric pressure cold plasma as an antifungal therapy. Appl Phys Lett 98:021501

    Article  Google Scholar 

  • Sun P, Wu HY, Bai N, Zhou HX, Wang RX, Feng HQ, Zhu WD, Zhang J, Fang J (2012a) Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Process Polym 9:157–164

    Article  Google Scholar 

  • Sun Y, Yu S, Sun P, Wu H, Zhu W, Liu W, Zhang J, Fang J, Li R (2012b) Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs. PLoS One 7(7):e40629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surowsky B, Schlüter O, Knorr D (2014) Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev 7(2):82–108

    Article  Google Scholar 

  • Tian Y, Ma R, Zhang Q, Feng H, Liang Y, Zhang J, Fang J (2015) Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Process Polym 12:439–449

    Article  CAS  Google Scholar 

  • Wang SQ, Huang GQ, Li YP, Xiao JX, Zhang Y, Jiang WL (2015) Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol 241:103–113

    Article  CAS  Google Scholar 

  • Wielogorska E, Ahmed Y, Meneely J, Graham WG, Elliott CT, Gilmore BF (2019) A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem 301:125281

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Lu XP, Feng A, Pan Y, Ostrikov K (2010) Highly effective fungal inactivation in He+O2 atmospheric-pressure nonequilibrium plasmas. Phys Plasmas 17:123502

    Article  Google Scholar 

  • Xu D, Liu D, Wang B, Chen C, Chen Z, Li D, Yang Y, Chen H, Kong M (2015) In situ OH generation from O2 and H2O2 plays a critical role in plasma-induced cell death. PLoS One 10(6):1–14

    Article  Google Scholar 

  • Xu Y, Tian Y, Ma R, Liu Q, Zhang J (2016) Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem 197:436–444

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhu Y, Cui D, Du M, Wang J, Ma R, Jiao Z (2019) Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast cells on a tissue model by surface micro-discharge plasma. J Phys D Appl Phys 52:395201

    Article  CAS  Google Scholar 

  • Xu H, Ma R, Zhu Y, Du M, Zhang H, Jiao Z (2020) A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. Sci Total Environ 703:134965

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A (2010) Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym 7:301–308

    Article  CAS  Google Scholar 

  • Yasui S, Seki S, Yoshida R, Shoji K, Terazoe H (2016) Sterilization of Fusarium oxysporum by treatment of non-thermal equilibrium plasma in nutrient solution. Jpn J Appl Phys 55:01AB01

    Article  Google Scholar 

  • Ye S, Song X, Liang JL, Zheng S, Lin Y (2012) Disinfection of airborne spores of Penicillium expansum in cold storage using continuous direct current corona discharge. Biosyst Eng 113:112–119

    Article  Google Scholar 

  • Yong HI, Kim HJ, Park S, Choe W, Oh MW, Jo C (2014) Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli. Foodborne Pathog Dis 11(8):652e657

    Article  Google Scholar 

  • Yoshino K, Matsumoto H, Iwasaki T, Kinoshita S, Noda K, Iwamori S (2013) Monitoring of sterilization in an oxygen plasma apparatus, employing a quartz crystal microbalance (QCM) method. Vacuum 93:84–89

    Article  CAS  Google Scholar 

  • Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká V, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988

    Article  Google Scholar 

  • Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C (2005) The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 41:1232

    Article  PubMed  Google Scholar 

  • Zhang Q, Liang Y, Feng H, Ma R, Tian Y, Zhang J, Fang J (2013) A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl Phys Lett 102(1–4):203701

    Article  Google Scholar 

  • Zhu Y, Li C, Cui H, Lin L (2020) Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol 99:142–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruonan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, R., Jiao, Z. (2022). Inactivation of Fungi and Fungal Toxins by Cold Plasma. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_5

Download citation

Publish with us

Policies and ethics