Skip to main content
Log in

Effect of Non-Thermal Plasma-Activated Water on Fruit Decay and Quality in Postharvest Chinese Bayberries

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Recently, non-thermal plasma-activated water (PAW) became a relatively new concept developed in the food industry. The effects of PAW on fruit decay, microbial loads, and quality of postharvest Chinese bayberry were investigated. Chinese bayberries were treated by PAW for 0.5, 2, or 5 min and then stored at 3 °C for 8 days. Experimental results show that all PAW treatments could reduce fruit decay by around 50 % compared to control at the end of storage. There was no dose-effect relationship between PAW treatment time and fruit decay. Meanwhile, a 0.5-min PAW treatment could remarkably decrease microbial population on Chinese bayberries during storage, and the maximum reductions reached around 1.1 log CFU/g both for bacteria and fungi at the end day of storage. Scanning electron microscopy results reveal that PAW could significantly change the morphology of microbial cells on Chinese bayberries. Moreover, physicochemical properties analysis of PAW demonstrates that the microbial inactivation of PAW is mainly attributed to the combined action of high oxidation reduction potential and low pH. Additionally, PAW-treated fruits exhibited markedly higher firmness, color index of red grapes, and total soluble solids than the control did at the eighth day. These results indicate that PAW might be a promising strategy to control fruit decay and maintain quality of Chinese bayberry during postharvest storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Aal, E. M., & Hucl, P. (2003). Composition and stability of anthocyanins in blue-grained wheat. Journal of Agricultural and Food Chemistry, 51, 2174–2180.

    Article  CAS  Google Scholar 

  • Ames, B. M., Shigena, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7922.

    Article  CAS  Google Scholar 

  • Bao, J. S., Cai, Y., Sun, M., Wang, G. Y., & Corke, H. (2005). Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry, 53, 2327–2332.

    Article  CAS  Google Scholar 

  • Burlica, R., Grim, R. G., Shih, K. Y., Balkwill, D., & Locke, B. R. (2010). Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Processes and Polymers, 7, 640–649.

    Article  CAS  Google Scholar 

  • Cantu, D., Vicente, A. R., Greve, L. C., Dewey, F. M., Bennett, A. B., Labavitch, J. M., & Powell, A. L. T. (2008). The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proceedings of the National Academy of Sciences of the United States of America, 105, 859–864.

    Article  CAS  Google Scholar 

  • Cantu, D., Blanco-Ulate, B., Yang, L., Labavitch, J. M., Bennett, A. B., & Powell, A. T. (2009). Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiology, 150, 1434–1449.

    Article  CAS  Google Scholar 

  • Chen, H. J., Yang, H. L., Gao, H. Y., Long, J., Tao, F., Fang, X. J., & Jiang, Y. M. (2013). Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits. Chemistry Central Journal, 7, 1–7.

    Article  CAS  Google Scholar 

  • Gao, L., & Mazza, G. (1994). Quantitation and distribution of simple and acylated anthocyanins and other phenolics in blueberries. Journal of Food Science, 59, 1057–1059.

    Article  CAS  Google Scholar 

  • Graves, D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics, 45, 263001–263042.

    Article  Google Scholar 

  • Jin, P., Wu, X., Xu, F., Wang, X. L., Wang, J., & Zheng, Y. H. (2012). Enhancing antioxidant capacity and reducing decay of Chinese bayberries by essential oils. Journal of Agricultural and Food Chemistry, 60, 3769–3775.

    Article  CAS  Google Scholar 

  • Kamgang-Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon-Fontaine, M. N., Doubla, A., & Naïtali, M. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Letters in Applied Microbiology, 48, 13–18.

    Article  CAS  Google Scholar 

  • Heinonen, I. M., Meyer, A. S., & Frankel, E. N. (1998). Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry, 46, 4107–4112.

    Article  CAS  Google Scholar 

  • Laroussi, M. (2005). Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes and Polymers, 2, 391–400.

    Article  CAS  Google Scholar 

  • Liao, C. H., Cooke, P. H., & Niemira, B. A. (2010). Localization, growth, and inactivation of Salmonella Saintpaul on Jalape˜no peppers. Journal of Food Science, 75, M377–M382.

    Article  CAS  Google Scholar 

  • Ma, R. N., Feng, H. Q., Li, F. T., Liang, Y. D., Zhang, Q., Zhu, W. D., Zhang, J., Becker, K. H., & Fang, J. (2012). An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Applied Physics Letters, 100, 123701–123704.

    Article  Google Scholar 

  • Ma, R. N., Feng, H. Q., Liang, Y. D., Zhang, Q., Tian, Y., Su, B., Zhang, J., & Fang, J. (2013). Atmospheric pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium. Journal of Physics D: Applied Physics, 46, 285401–285408.

    Article  Google Scholar 

  • Ma, R. N., Wang, G. M., Tian, Y., Wang, K. L., Zhang, J., & Fang, J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643–651.

    Article  CAS  Google Scholar 

  • Maeda, Y., Igura, N., Shimoda, M., & Hayakawa, I. (2003). Bactericidal effect of atmospheric gas plasma on Escherichia coli K12. International Journal of Food Science and Technology, 38, 889–892.

    Article  CAS  Google Scholar 

  • Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances, 26, 610–617.

    Article  CAS  Google Scholar 

  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3, 125–142.

    Article  CAS  Google Scholar 

  • Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., & Weltmann, K. D. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7, 250–257.

    Article  CAS  Google Scholar 

  • Pankaja, S. K., Bueno-Ferrera, C., Misraa, N. N., Milosavljevi, V., O’Donnellb, C. P., Bourkea, P., Keenera, K. M., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 35, 5–17.

    Article  Google Scholar 

  • Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresource Technology, 99, 5104–5109.

    Article  CAS  Google Scholar 

  • Tian, Y., Ma, R. N., Zhang, Q., Feng, H. Q., Liang, Y. D., Zhang, J., & Fang, J. (2015). Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Processes and Polymers, 12, 439–449.

    Article  CAS  Google Scholar 

  • Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., & Versteeg, C. (2009). Advances in innovative processing technologies for microbial inactivation and enhancement of food safety–pulsed electric field and low-temperature plasma. Trends in Food Science and Technology, 20, 414–424.

    Article  CAS  Google Scholar 

  • Wang, K. T., Jin, P., Cao, S. F., Shang, H. T., Yang, Z. F., & Zheng, Y. H. (2009). Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. Journal of Agricultural and Food Chemistry, 57, 5809–5815.

    Article  CAS  Google Scholar 

  • Wang, K. T., Cao, S. F., Jin, P., Rui, H. J., & Zheng, Y. H. (2010a). Effect of hot air treatment on postharvest mold decay in Chinese bayberry fruit and the possible mechanisms. International Journal of Food Microbiology, 141, 11–16.

    Article  Google Scholar 

  • Wang, K. T., Jin, P., Shang, H. T., & Zheng, Y. H. (2010b). Effect of methyl jasmonate in combination with ethanol treatment on postharvest decay and antioxidant capacity in Chinese bayberries. Journal of Agricultural and Food Chemistry, 58, 9597–9604.

    Article  CAS  Google Scholar 

  • Wang, K. T., Jin, P., Tang, S. S., Shang, H. T., Rui, H. J., Di, H. T., Cai, Y., & Zheng, Y. H. (2011). Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 22, 82–87.

    Article  Google Scholar 

  • Xu, Y. Y., Tian, Y., Ma, R. N., Liu, Q. H., & Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms. Agaricus bisporus. Food Chem., 197, 436–444.

    Article  CAS  Google Scholar 

  • Yang, Z. F., Zheng, Y. H., & Cao, S. F. (2009). Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging actvity of Chinese bayberry fruit. Journal of Agricultural and Food Chemistry, 57, 176–181.

    Article  CAS  Google Scholar 

  • Yu, S., Chen, Q., Liu, J., Wang, K., Sun, S., Jiang, Z., Zhang, J., & Fang, J. (2015). Dielectric barrier structure with hollow electrodes and its recoil effect. Applied Physics Letters, 106, 244101–244104.

    Article  Google Scholar 

  • Zhang, W. S., Chen, K. S., Zhang, B., Sun, C. D., Cai, C., Zhou, C. H., Xua, W. P., Zhang, W. Q., & Fergusonc, I. B. (2005). Postharvest responses of Chinese bayberry fruit. Postharvest Biology and Technology, 37, 241–251.

    Article  CAS  Google Scholar 

  • Zhang, W. S., Li, X., Wang, X. X., Wang, G. Y., Zheng, J. T., Abeysinghe, D. C., Ferguson, I. B., & Chen, K. S. (2007). Ethanol vapour treatment alleviates postharvest decay and maintains fruit quality in Chinese bayberry. Postharvest Biology and Technology, 46, 195–198.

    Article  CAS  Google Scholar 

  • Zhang, Q., Liang, Y. D., Feng, H. Q., Ma, R. N., Tian, Y., Zhang, J., & Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied Physics Letters, 102, 203701–203704.

    Article  Google Scholar 

  • Zhang, Q., Ma, R. N., Tian, Y., Su, B., Wang, K. L., Yu, S., Zhang, J., & Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environmental Science & Technology, 50, 3184–3192.

    Article  CAS  Google Scholar 

  • Zheng, Y. H., Yang, Z. F., & Chen, X. H. (2008). Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control, 19, 470–474.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Peking University Biomed-X Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Yu, S., Tian, Y. et al. Effect of Non-Thermal Plasma-Activated Water on Fruit Decay and Quality in Postharvest Chinese Bayberries. Food Bioprocess Technol 9, 1825–1834 (2016). https://doi.org/10.1007/s11947-016-1761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1761-7

Keywords

Navigation