Skip to main content

Application of Biotechnological Tool in Bamboo Improvement

  • Chapter
  • First Online:
Biotechnological Advances in Bamboo

Abstract

Bamboos belonging to the family Poaceae are one of the most versatile, natural, and renewable resources among the plant kingdom. Bamboos are generally found in tropical and subtropical parts of the world. They play an important role in the bioenergy and the bioeconomy of many Asian countries. Although bamboos are early maturing and fast-growing plants, due to a lack of suitable regulation, the annual yields are not sufficient to meet the annual demands. Increasing demand for bioenergy; exploitation by industries for paper, pulp, timber, fiber, biofuel, food, and medicine; and lack of sufficient efforts to sustain the cultivation of bamboo are the main causes of rapid reduction in its population. Bamboos are conventionally propagated through seed, culm cuttings, rhizome cuttings, and clump division, but these methods are inadequate due to large demands of propagules of new crop along with limited availability, low rate of multiplication, a low percentage of rooting, and seasonal dependence. This can be accomplished by the employment of advanced biotechnological tools. Through biotechnological tools, bamboos may be improved by applying micropropagation, genomics, proteomics, transgenic technology, and nanotechnology. This chapter is dealing with the available information on the applications of the biotechnological tools applied in bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlak T, Tiwari S, Tripathi MK, Gupta N, Sahu VK, Bhawar P, Kandalkar VS (2019) Biotechnology: An advanced tool for crop improvement. Curr J Appl Sci Technol 33:1–11

    Article  CAS  Google Scholar 

  • Agnihotri RK, Mishra J, Nandi SK (2009) Improved in vitro shoot multiplication and rooting of Dendrocalamus hamiltonii Nees et Arn. ex Munro: production of genetically uniform plants and field evaluation. Acta Physiol Plant 31:961–967

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Singh VN, Shasmi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodiumtriflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8

    Article  CAS  Google Scholar 

  • Ahmad S, Khushnooda RA, Jagdalec P, Tulliani JM, Ferroa GA (2015) High performance selfconsolidating cementitious composites by using micro carbonized bamboo particles. Mater Des 76:223–229

    Article  CAS  Google Scholar 

  • Alazem M, Lin KY, Lin NS (2014) The abscisic acid pathway has multifaceted effects on the accumulation of bamboo mosaic virus. Mol Plant-Microbe Interact 27:177–189

    Article  CAS  PubMed  Google Scholar 

  • Alexander MP, Rao TC (1968) In vitro culture of bamboo embryo. Curr Sci 37:415

    Google Scholar 

  • Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 28:304–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Arya I D, Arya S (2015) In vitro shoot proliferation and somatic embryogenesis: means of rapid bamboo multiplication. In: 10th World Bamboo Congress, propagation, plantation and management, Korea

    Google Scholar 

  • Arya S, Satsangi R, Arya ID (2008) Large scale plant production of edible bamboo Dendrocalamus asper through somatic embryogenesis. Bamboo Sci Cult 21(1):13–23

    Google Scholar 

  • Bag N, Palni LMS, Chandra S, Nandi SK (2012) Somatic embryogenesis in ‘Maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr Sci 102:1279–1287

    Google Scholar 

  • Banik RL (1994) Review of conventional propagation research in bamboos and future strategy. INBAR Technical Report No. 5 Constraints to production of bamboo and rattan. INBAR, New Delhi, pp 115–142

    Google Scholar 

  • Banik RL (1995) Selection criteria and population enhancement of priority bamboos. In: Williams JT, Rao IVR, Rao AN (eds) Genetic enhancement of bamboo and rattan. INBAR Technical Report No. 7, New Delhi, pp 99–110

    Google Scholar 

  • Bartels D, Mattar MZM (2002) Oropetium thomaeum. A resurrection grass with a diploid genome. Maydica (Italy)

    Google Scholar 

  • Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930

    Article  CAS  Google Scholar 

  • Bejoy M, Anish NP, Radhika BJ, Nai GM (2012) In vitro propagation of Ochlandrawightii (Munro) Fisch: an endemic reed of Southern Western Ghats India. Biotechnology 11:67–73

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Jenkins J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bisht P, Pant M, Kant A (2010) In vitro propagation of Gigantochloaatroviolaceae Widjaja through nodal explants. J Am Sci 6:1019–1025

    Google Scholar 

  • Cao YW, Jin R, Mirkin CA (2001) DNA-modified core-shell ag/au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  CAS  PubMed  Google Scholar 

  • Das S, Saha M (2012) Preparation of carbon Nanosphere from bamboo and its use in water purification. Curr Trends Tech Sci 2:2279–0535

    Google Scholar 

  • David F (1984) The book of bamboo: a comprehensive guide to this remarkable plant, its uses, and its history. Sierra Club Books, San Francisco

    Google Scholar 

  • Devi YR (2013) Bamboo forest resources of India and its role in food security-a review. Agric Rev 34:236–241

    Article  Google Scholar 

  • Devi WS, Sharma GJ (2009) In vitro propagation of Arundinariacallosa Munroan edible bamboo from nodal explants of mature plants. Open Plant Sci J 3:35–39

    Article  CAS  Google Scholar 

  • Devi WS, Bengyella L, Sharma GJ (2012) In vitro seed germination and micropropagation of edible bamboo Dendrocalamusgiganteus Munro using seeds. Biotechnology 11:74–80

    Article  CAS  Google Scholar 

  • Erkoc S (2006) Structural and electronic properties of bamboo-like carbon nanostructure. Phys E 31:62–66

    Article  CAS  Google Scholar 

  • Gillis K, Gielis J, Peeters H, Dhooghe E, Oprins J (2007) Somatic embryogenesis from mature Bambusabalcooa Roxburgh as basis for mass production of elite forestry bamboo. Plant Cell Tissue Organ Cult 91:115–123

    Article  Google Scholar 

  • Godbole S, Sood A, Thakur R, Sharma M, Ahuja PS (2002) Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Curr Sci 83:885–889

    CAS  Google Scholar 

  • Goyal AK, Pradhan S, Basistha BC, Sen A (2015) Micropropagation and assessment of genetic fidelity of Dendrocalamusstrictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 5:473–482

    Article  PubMed  Google Scholar 

  • Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, HuY ZTZ (2010) Insights into the bamboo genome: syntenic relationships to rice and sorghum. J Integr Plant Biol 52:1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zhou J, Cao Y, Lu X, Duan N, Ren P, Chen K (2011) In vitro callus induction and plant from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus (Keng et Keng f.) Chia et H. L. Fung. Afr J Biotechnol 10:3210–3215

    Article  CAS  Google Scholar 

  • Islam N, Rahman MM (2005) Micro-cloning in commercially important six bamboo species for mass propagation and at a large-scale cultivation. Plant Tissue Cult Biotech 15:103–111

    Google Scholar 

  • Jiang K, Zhou M (2014) Recent advances in bamboo molecular biology. J Trop Subtrop Bot 22:632–642

    CAS  Google Scholar 

  • Jiang W, Bai T, Dai H, Wei Q, Zhang W, Ding Y (2017) Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—a primarily asexual reproduction species in China. Tree Genet Genomes 13:130

    Article  Google Scholar 

  • Kaladhar DSVGK, Tiwari P, Duppala SK (2017) A rapid in vitro micro propagation of Bambusa Vulgaris using inter-node explant. Int J Life Sci Sci Res 3:1052–1054

    Google Scholar 

  • Kalia S, Kalia RK, Sharma SK (2004) In vitro regeneration of an indigenous bamboo (Bambusa nutans) from internode and leaf explant. J Bamboo Rattan 3:217–228

    Article  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kalia RK, Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19:21–41

    Article  PubMed  CAS  Google Scholar 

  • Karp A, Richter GM (2011) Meeting the challenge of food and energy security. J Exp Bot 62:3263–3271

    Article  CAS  PubMed  Google Scholar 

  • Kaur D, Ogra RK, Bhattacharya A, Sood A (2012) Changes in sugar levels during slow growth of Dendrocalamus hamiltonii somatic embryos due to liquid paraffin overlay. In Vitro Cell Dev Biol Plant 48:120–126

    Article  CAS  Google Scholar 

  • Kaur D, Thapa P, Sharma M, Bhattacharya A, Sood A (2014) In vitro flowering- a system for tracking floral organ development in Dendrocalamus hamiltonii Nees et Arn ex Munro. Indian J Exp Biol 52:825–834

    PubMed  Google Scholar 

  • Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y (2015) In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 15:1291–1306

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Singh YP, Kumar D, Thapliyal M, Barthwal S (2015) Bamboos in India. ENVIS Centre on Forestry. National Forest Library and Information Centre, FRI, Dehradun

    Google Scholar 

  • Kersey PJ (2019) Plant genome sequences: past, present, future. Curr Opin Plant Biol 48:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kulzer F, Orrit M (2004) Single-molecule optics. Annu Rev Phys Chem 55:585–611

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Reddampalli Venkataramareddy S, Neelwarne B (2007) Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron J Biotechnol 10:106–113

    Article  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Li S, Ramakrishnan M, Vinod KK, Kalendar R, Yrjälä K, Zhou M (2019) Development and deployment of high throughput inter-retrotransposon amplified polymorphism (IRAP)-based markers reveal genetic diversity and population structure of Phyllostachys bamboo. Forests

    Google Scholar 

  • Lin S, Chang WC (1998) Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep 17:617–620

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Chen CT, Lin CC, Chang WC (2003) A method of inflorescence proliferation. Plant Cell Rep 21:838–843

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2004a) Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76:75–82

    Article  CAS  Google Scholar 

  • Lin CS, Vidmar J, Chang WC (2004b) Effects of growth regulators on inflorescence proliferation of Bambusa edulis. Plant Growth Regul 43:221–225

    Article  CAS  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2005) Shoot regeneration, re-flowering and post flowering survival in bamboo inflorescence culture. Plant Cell Tissue Organ cult 82:243–249

    Article  CAS  Google Scholar 

  • Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. HortScience 42:1243–1246

    Article  CAS  Google Scholar 

  • Liu JX, Zhou MY, Yang GQ, Zhang YX, Ma PF, Guo C, Li DZ (2020) ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol Phylogenet Evol 146:106758

    Article  PubMed  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  CAS  PubMed  Google Scholar 

  • Mehta U, Rao IVR, Ram HYM (1982) Somatic embryogenesis in bamboo. In: Fujiwara A (ed) Jpn. Assoc. Proc 5th Intl Cong Plant Tiss Cell Cult, pp 109–110

    Google Scholar 

  • Mehta R, Sharma V, Sood A, Sharma M, Sharma RK (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro derived plantlets of B. nutans wall., using AFLP markers. Eur J For Res 130:729–736

    Article  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Mishra Y, Patel P, Ansari SA (2011) Acclimatization and macroproliferation of micropropagated plants of Bambusatulda Roxb. Asian J Exp Biol Sci 2:498–501

    Google Scholar 

  • Mitin VV, Kochelap VA, Stroscio MA (eds) (2008) Introduction to nanoelectronics: materials for nanoelectronics. Cambridge University Press, Cambridge, pp 65–108

    Google Scholar 

  • Mudoi KD, Saikia SP, Goswami A, Gogoi A, Bora D, Borthakur M (2013) Micropropagation of important bamboos: a review. Afr J Biotechnol 12:2770–2785

    Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557

    Article  Google Scholar 

  • Nadgauda RS, Parasharami VA, Mascarenhas AF (1990) Precocious flowering and seeding behaviour in tissue-cultured bamboos. Nature 344:335

    Article  Google Scholar 

  • Nayak L, Mishra SP (2016) Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash Text 3:2

    Article  Google Scholar 

  • Nayak S, Rout GR, Das P (2003) Evaluation of the genetic variability in bamboo using RAPD markers. Plant Soil Environ 49:24–28

    Article  CAS  Google Scholar 

  • Negi D, Saxena S (2011) In vitro propagation of Bambusa nutans Wall. ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5:35–43

    Article  Google Scholar 

  • Niazian M, Shariatpanahi ME (2020) In vitro-based doubled haploid production: recent improvements. Euphytica 216:69

    Article  CAS  Google Scholar 

  • Nirmala C, Bisht MS (2012) Molecular markers in bamboo systematics and germplasm screening. Plant Cell Biotechnol Mol Biol 13:73–82

    Google Scholar 

  • Ojha A, Verma N, Kumar A (2009) In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments explants. Res Crops 10:430–436

    Google Scholar 

  • Oramas P, Ramírez N, Ayala M, García R, Herrera L, Falcón V, Gavilondo J (2000) Molecular farming of pharmaceutical and veterinary proteins from transgenic plants: CIGB experience. In: Plant genetic engineering: towards the third millennium: proceedings of the international symposium on plant genetic engineering, Havana, 6–10 December 1999, pp 222–228

    Google Scholar 

  • Palombi M, Damiano C (2002) Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidiadeliciosa A. Chev). Plant Cell Rep 20:1061–1066

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A, Yadav V (2016) Molecular markers and their application in plant biotechnology. In: Biotechnological strategies for the conservation of medicinal and ornamental climbers, pp 389–413

    Google Scholar 

  • Paterson AH (2010) Comparative genomics in crop plants. In: Molecular techniques in crop improvement, pp 23–61

    Google Scholar 

  • Peng Z, Lu T, Li L, Liu X, Gao Z, HuT FD (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q (2016) Biocompatible cellulose- based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64

    Article  CAS  PubMed  Google Scholar 

  • Peredo EL, Revilla MÁ, Arroyo-García R (2006) Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. J Plant Physiol 163:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Qiao G, Li H, Liu M, Jiang J, Yin Y, Zhang L, Zhuo R (2013) Callus induction and plant regeneration from anthers of Dendrocalamus latiflorus Munro. In Vitro Cell Dev Biol Plant 49:375–382

    Article  CAS  Google Scholar 

  • Qiao G, Yang H, Zhang L, Han X, Liu M, Jiang J, Zhuo R (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell Dev Biol Plant 50:385–391

    Article  CAS  Google Scholar 

  • Rajput BS, Jani MD, Sasikumar K, Manokari M, Shekhawat MS (2019) An improved micropropagation protocol for manga bamboo-Pseudoxytenanthera stocksii (Munro) TQ Nguyen. World News Nat Sci 25:141–154

    CAS  Google Scholar 

  • Rajput BS, Jani M, Ramesh K, Manokari M, Jogam P, Allini VR, Shekhawat MS (2020) Large-scale clonal propagation of Bambusabalcooa Roxb.: an industrially important bamboo species. Ind Crop Prod 157:112905

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Zhou M, Baskar K, Packiam S (2018) Role of bamboo in ecosystem. Austin J Environ Toxicol 4:1023

    Google Scholar 

  • Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M (2020) Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Secur 9:e229

    Article  Google Scholar 

  • Ray T, Roy SC (2007) Phylogenetic relationships between members of Amaranthaceae and Chenopodiaceae of lower gangetic plains using RAPD and ISSR markers. Bangladesh J Bot 36:21–28

    Article  Google Scholar 

  • Ray SS, Ali MDN, Banerjee M, Yeasmin L (2018) In vitro and in vivo assessment of thidiazuron mediated micro-clones of Dendrocalamus asper, an ornamental bamboo species. J Crop Weed 14:150–157

    Google Scholar 

  • Roco MC, Williams RS, Alivasatos P (1999) Nanotechnology research direction: IWGN workshopreport. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Saeed T, Shahzad A (2016) Basic principles behind genetic transformation in plants. In: Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham, pp 327–350

    Chapter  Google Scholar 

  • Safiuddin M, Gonzalez M, Cao JW, Tighe SL (2014) State of-the-art report on use of nanomaterials in concrete. Int J Pavement Eng 15:940–949

    Article  CAS  Google Scholar 

  • Sawarkar AD, Shrimankar DD, Kumar A, Kumar A, Singh E, Singh L, Kumar R (2020) Commercial clustering of sustainable bamboo species in India. Ind Crop Prod 154:112693

    Article  Google Scholar 

  • Saxena S, Dhawan V (1999) Regeneration and large-scale propagation of bamboo (Dendrocalamusstrictus Nees) through somatic embryogenesis. Plant Cell Rep 18:438–443

    Article  CAS  Google Scholar 

  • Scott N, Chan H (2002) Nanoscale science and engineering for agriculture and food system report. National Planning Workshop, Washington, DC

    Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2011) Micropropagation of Dendrocalamus asper (Schult. & Schult. F. Backer ex K Heyne): an exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17:9–21

    CAS  Google Scholar 

  • Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013a) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19:21–41

    Article  CAS  PubMed  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013b) Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) backer ex K. Heyne using DNA-based markers. Acta Physiol Plant 35:419–430

    Article  CAS  Google Scholar 

  • Singla R, Sonib S, Markand P, Avnesh K, Mahesh K, Patial V, Padwad YS, Yadava SK (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162

    Article  CAS  PubMed  Google Scholar 

  • Somashekar PV, Rathore TS, Fatima T (2018) In vitro plant regeneration of Dendrocalamusstocksii (Munro) M. Kumar, Remesh& Unnikrisnan, through somatic embryogenesis. Am J Plant Sci 9:2429–2445

    Article  CAS  Google Scholar 

  • Sood A, Ahuja PS, Sharma M, Sharma OP, Godbole S (2002) In vitro protocols and field performance of elites of an important bamboo Dendrocalamus hamiltonii Nees et Arn. ex Munro. Plant Cell Tissue Organ Cult 71:55–63

    Article  CAS  Google Scholar 

  • Sood A, Bhattacharya A, Sharma M, Sharma RK, Nadha HK, Sood P, Ahuja PS (2013) Somatic embryogenesis and Agrobacterium mediated genetic transformation in bamboos. Somatic embryogenesis and genetic transformation in plants

    Google Scholar 

  • Sood P, Bhattacharya A, Joshi R, Gulati A, Chanda S, Sood A (2014) A method to overcome the waxy surface, cell wall thickening and polyphenol induced necrosis at wound sites-the major deterrents to Agrobacterium-mediated transformation of bamboo, a woody monocot. J Plant Biochem Biotechnol 23:69–80

    Article  CAS  Google Scholar 

  • Stapleton CMA, Rao VR, Ramanatha V (1995) Progress and prospects in genetic diversity studies on bamboo and its conservation. In: Proceedings of the IVth International Bamboo Congress, Bali, pp 23–44

    Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. In: Harald K (ed) Nanotechnology, vol 3. Weinheim, Wiley, pp 125–143

    Google Scholar 

  • Suyama Y, Obayashi K, Hayashi I (2000) Clonal structure in a dwarf bamboo (Sasasenanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Mol Ecol 9:901–906

    Article  CAS  PubMed  Google Scholar 

  • Thapa P, Bhattacharya A, Sood P, Devi K, Sood A (2018) Advances in bamboo biotechnology: present status and future perspective. In: Biotechnologies of crop improvement, pp 243–265

    Google Scholar 

  • Thiruvengadam M, Rekha KT, Chung IM (2011) Rapid in vitro micropropagation of Bambusa oldhamii Munro. Philipp Agric Sci 94:7–13

    Google Scholar 

  • VanBuren R, Wai CM, Keilwagen J, Pardo J (2018) A chromosome-scale assembly of the model desiccation tolerant grass Oropetium thomaeum. Plant Direct 2(11):e00096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Venkatachalam P, Kalaiarasi K (2016) Indirect somatic embryogenesis and plantlet development from mature seed embryo explants of Bambusaarundinacea (Retz.) wild. In: Plant tissue culture: propagation, conservation and crop improvement, pp 509–519

    Google Scholar 

  • Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusaarundinacea (Retz.) wild: a recalcitrant bamboo species. J Genet Eng Biotechnol 13:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorontsova MS, Clark LG, Dransfield J, Govaerts R, Baker WJ (2016) World checklist of bamboos and rattans: in celebrating of INBAR’s 20th anniversary. International Centre for Bamboo and Rattan, Beijing

    Google Scholar 

  • Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusatulda and Melocannabaccifera) through nodal culture. Sci World J 2014:345794

    Article  CAS  Google Scholar 

  • Yasin S, Liu L, Yao J (2013) Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. J Fiber Bio Eng Inform 6:77–84

    Article  Google Scholar 

  • Ye S, Cai C, Ren H, Wang W, Xiang M, Tang X, Zhu Q (2017) An efficient plant regeneration and transformation system of ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front Plant Sci 8:1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye S, Chen G, Kohnen MV, Wang W, Cai C, Ding W, Lin C (2020) Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J 18:1501–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh ML, Chang WC (1986a) Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro). Theor Appl Genet 73:161–163

    Article  CAS  PubMed  Google Scholar 

  • Yeh ML, Chang WC (1986b) Somatic embryogenesis and subsequent plant regeneration from inflorescence callus of Bambusabeecheyana Munro var. beecheyana. Plant Cell Rep 5:409–411

    Article  CAS  PubMed  Google Scholar 

  • Yeh ML, Chang WC (1987) Plant regeneration via somatic embryogenesis in mature embryo derived callus culture of Sinocalamuslatiflora (Munro) McClure. Plant Sci 51:93–96

    Article  Google Scholar 

  • Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso bamboo. PLoS One 8:81954

    Article  CAS  Google Scholar 

  • Zang QL, Zhou L, Fei ZG, Yang HY, Wang XQ, Lin XC (2016) Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. Springerplus 5:1799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult 103:325–332

    Article  CAS  Google Scholar 

  • Zhang YJ, Ma PF, Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 6:20596

    Article  CAS  Google Scholar 

  • Zhang XM, Zhao L, Larson-Rabin Z, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7:e42082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yang L, Peng Z, Sun H, Yue X, Lou Y, Gao Z (2015) Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci Rep 5:1–10

    Google Scholar 

  • Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, Lou Y (2018) Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7:giy115

    PubMed Central  Google Scholar 

  • Zhaohua Z, Wei J (2018) Sustainable bamboo development. CABI, Wallingford

    Google Scholar 

  • Zhou S, Bechner MC, Place M, Churas CP, Pape L, Leong SA, Schwartz DC (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8:278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Torabi MLJ, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6:3058–3074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance from the University Grant Commission, India, in the form of fellowship to the author ST and AW is gratefully acknowledged.

Conflict of Interest

No

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahzad, A., Tahseen, S., Wasi, A., Ahmad, Z., Khan, A.A. (2021). Application of Biotechnological Tool in Bamboo Improvement. In: Ahmad, Z., Ding, Y., Shahzad, A. (eds) Biotechnological Advances in Bamboo. Springer, Singapore. https://doi.org/10.1007/978-981-16-1310-4_13

Download citation

Publish with us

Policies and ethics